Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T13:47:29.787Z Has data issue: false hasContentIssue false

How galaxies form: Mass assembly from chemical abundances in the era of large surveys

Published online by Cambridge University Press:  09 March 2010

Rosemary F.G. Wyse*
Affiliation:
Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical abundances in the atmosphere of a star provide unique information about the gas from which that star formed, and, modulo processes that are not important for the vast majority of stars, such as mass transfer in close binary systems, are conserved through a star's life. Correlations between chemistry and kinematics have been used for decades to trace dynamical evolution of the Milky Way Galaxy. I discuss how it should be possible to refine and extend such analyses, provided planned large-scale deep imaging surveys have matched spectroscopic surveys.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Abadi, M., Navarro, J., Steinmetz, M., & Eke, V. 2003, ApJ, 597, 21CrossRefGoogle Scholar
An, D. et al. 2009, ApJ submitted (arXiv 0907.1082)Google Scholar
Beers, T. & Christlieb, N. 2005, ARAA, 43, 531Google Scholar
Belokurov, V. et al. 2006, ApJ, 647, L111CrossRefGoogle Scholar
Belokurov, V. et al. 2007, ApJ, 654, 897CrossRefGoogle Scholar
Bensby, T. & Feltzing, S. 2009, these proceedings (arXiv:0908.3907)Google Scholar
Bensby, T., Zenn, A., Oey, S., & Feltzing, S. 2007a, ApJ, 663, L13CrossRefGoogle Scholar
Bensby, T., Oey, S., Feltzing, S., & Gustaffson, B. 2007b, ApJ, 655, L89CrossRefGoogle Scholar
Bensby, T. et al. 2009, ApJ, 699, L174CrossRefGoogle Scholar
Carney, B. 1979, ApJ, 233, 211CrossRefGoogle Scholar
Carollo, D. et al. 2009, ApJ, submitted (arXiv:0909.3019)Google Scholar
Carollo, D. et al. 2008, Nature, 451, 216CrossRefGoogle Scholar
Cohen, J. G. & Huang, W. 2009, ApJ, 701, 1053CrossRefGoogle Scholar
Cohen, J. G. et al. 2009, ApJ, 699, 66CrossRefGoogle Scholar
Cohen, J. G. et al. 2008, ApJ, 682, 1029Google Scholar
Dehnen, W. 1998, AJ, 115, 2384CrossRefGoogle Scholar
Dehnen, W. 2000, AJ, 119, 800Google Scholar
Famaey, B. et al. 2005, A&A, 430, 165Google Scholar
Frebel, A., Simon, J. D., Geha, M., & Willman, B. 2009, ApJ in press (arXiv:0902.2395)Google Scholar
Fulbright, J., McWilliam, A., & Rich, R. M. 2007, ApJ, 661, 1152CrossRefGoogle Scholar
Geisler, D., Wallerstein, G., Smith, V., & Casetti-Dinescu, D. 2007, PASP, 119, 939CrossRefGoogle Scholar
Gilmore, G. et al. 2007, ApJ, 663, 948Google Scholar
Hernandez, X., Gilmore, G., & Valls-Gabaud, D. 2000, MNRAS, 317, 831CrossRefGoogle Scholar
Haywood, M. 2008, MNRAS, 388, 1175CrossRefGoogle Scholar
Ibata, R. & Gilmore, G. 1995a, MNRAS, 275, 591CrossRefGoogle Scholar
Ibata, R. & Gilmore, G. 1995b, MNRAS, 275, 605CrossRefGoogle Scholar
Ivezic, Z. et al. 2008, ApJ, 684, 287CrossRefGoogle Scholar
Johnson, J. et al. 2007, ApJ, 655, L33CrossRefGoogle Scholar
Johnson, J. et al. 2008, ApJ, 700, 1896Google Scholar
Johnston, K. et al. 2008, ApJ, 689, 936Google Scholar
Koch, A. 2009, AN, 330, 675Google Scholar
van Loon, J. et al. 2003, MNRAS, 338, 857CrossRefGoogle Scholar
Martin, N. F., de Jong, J., & Rix, H.-W. 2008, MNRAS, ApJ, 684, 1075Google Scholar
Matteucci, F. et al. 2009, A&A, 105, 531Google Scholar
Niederste-Ostholt, M. et al. 2009, MNRAS, 398, 1771CrossRefGoogle Scholar
Nissen, P. E., Gustafsson, B., Edvardsson, B., & Gilmore, G. 1994, A&A, 285, 440Google Scholar
Norris, J. E. et al. 2007, ApJ, 670, 774CrossRefGoogle Scholar
Norris, J. E. et al. 2008, ApJ, 689, L113CrossRefGoogle Scholar
Norris, J. E. et al. 2010a, ApJ, submittedGoogle Scholar
Norris, J. E. et al. 2010b, ApJ, submittedGoogle Scholar
Orban, C. et al. 2008, ApJ, 686, 1030CrossRefGoogle Scholar
Rich, R. M. 1988, AJ, 95, 828CrossRefGoogle Scholar
Roškar, R. et al. 2008a, ApJ, 675, L65Google Scholar
Roškar, R. et al. 2008b, ApJ, 684, L79CrossRefGoogle Scholar
Roederer, I. 2009, AJ, 137, 272Google Scholar
Ruchti, G. et al. (the RAVE collaboration), 2010, in preparationGoogle Scholar
Ryde, N. et al. 2009, A&A, in press (arXiv:0910.0448)Google Scholar
Sadler, E. M., Rich, R. M., & Terndrup, D. 1996, AJ, 112, 171Google Scholar
Sandage, A. R. 1969, ApJ, 158, 1115CrossRefGoogle Scholar
Searle, L. & Zinn, R. 1978, ApJ, 225, 357CrossRefGoogle Scholar
Schrönrich, R. & Binney, J. 2009, MNRAS, 396, 203Google Scholar
Sellwood, J. & Binney, J. 2002, MNRAS, 336, 785CrossRefGoogle Scholar
de Simone, R., Wu, X., & Tremaine, S. 2004, MNRAS, 350, 627CrossRefGoogle Scholar
Steinmetz, M., et al. (the RAVE collaboration) 2006, AJ, 132, 1645Google Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARAA, 47, 371Google Scholar
Unavane, M., Wyse, R. F. G., & Gilmore, G. 1996, MNRAS, 278, 727CrossRefGoogle Scholar
Uttenthaler, S. et al. 2008, ApJ, 682, 509CrossRefGoogle Scholar
van der Veen, W. & Habing, H. 1990, A&A, 231, 404Google Scholar
Wyse, R. F. G. & Gilmore, G. 1992, AJ, 104, 144Google Scholar
Zoccali, M., et al. 2003, A&A, 399, 931Google Scholar
Zoccali, M., et al. 2008, A&A, 486, 177Google Scholar