Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T20:53:49.190Z Has data issue: false hasContentIssue false

How does the stellar disk of the Milky Way get its gas?

Published online by Cambridge University Press:  02 August 2018

Sebastián E. Nuza
Affiliation:
Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC 67, Suc. 28, 1428 Buenos Aires, Argentina email: [email protected] Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Cristina Chiappini
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Cecilia Scannapieco
Affiliation:
Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Ivan Minchev
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Marie Martig
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
Thiago C. Junqueira
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In chemodynamical evolution models it is usually assumed that the Milky Way galaxy forms from the inside-out implying that gas inflows onto the disk decrease with galactocentric distance. Similarly, to reproduce differences between chemical abundances of the thick disk and bulge with respect to those of the thin disk, higher accretion fluxes at early times are postulated. By using a suite of Milky Way-like galaxies extracted from cosmological simulations, we investigate the accretion of gas on the simulated stellar disks during their whole evolution. In general, we find that the picture outlined above holds, although the detailed behavior depends on the assembly history of the Galaxy and the complexities inherent to the physics of galaxy formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Anders, F., Chiappini, C., Minchev, I., et al., 2017, A&A, 600, 70Google Scholar
Cescutti, G., 2008, A&A, 481, 691Google Scholar
Cescutti, G. & Chiappini, C., 2014, A&A, 565, 51Google Scholar
Chiappini, C., Matteucci, F., & Gratton, R., 1997, ApJ, 477, 765Google Scholar
Chiappini, C., Matteucci, F., & Romano, D., 2001, ApJ, 554, 1044Google Scholar
Creasey, P., Scannapieco, C., Nuza, S. E., et al., 2015, ApJ, 800, L4Google Scholar
Putman, M. E., Peek, J. E. G., & Joung, M. R., 2012, ARA&A, 50, 491Google Scholar
Martig, M., Bournaud, F., Teyssier, R., & Dekel, A., 2009, ApJ, 707, 250Google Scholar
Martig, M., Bournaud, F., Croton, D. J., Dekel, A., & Teyssier, R., 2012, ApJ, 756, 26Google Scholar
Minchev, T., Chiappini, C., & Martig, M., 2013, A&A, 558, A9Google Scholar
Minchev, T., Chiappini, C., & Martig, M., 2014, A&A, 572, A92Google Scholar
Nuza, S. E., Parisi, F., & Scannapieco, C., et al., 2014, MNRAS, 441, 2593Google Scholar
Scannapieco, C., Creasey, P., Nuza, S. E., et al., 2015, A&A, 577, A3Google Scholar
Springel, V., Wang, J., Vogelsberger, M., et al., 2008, MNRAS, 391, 1685Google Scholar