Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T17:16:54.211Z Has data issue: false hasContentIssue false

High-energy emission from galaxies: the star-formation/gamma-ray connection

Published online by Cambridge University Press:  17 August 2012

Stefan Ohm
Affiliation:
X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, LE1 7RH, UK email: [email protected] School of Physics and Astronomy, University of Leeds, LS2 9JP, UK email: [email protected]
Jim Hinton
Affiliation:
X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, LE1 7RH, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The impact of non-thermal processes on the spectral energy distributions of galaxies can be dramatic, but such processes are often neglected in considerations of their structure and evolution. Particle acceleration associated with high mass star formation and AGN activity not only leads to very broad band (radio-γ-ray) emission, but may also produce very significant feedback effects on galaxies and their environment. The recent detections of starburst galaxies at GeV and TeV energies suggest that γ-ray instruments have now reached the critical level of sensitivity to probe the connection between particle acceleration and star-formation in galaxies. In this paper we will try to summarise this recent progress, put it into a multi-wavelength context and also discuss the prospects for more precise and sensitive γ-ray measurements with the upcoming CTA observatory.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abdo, A. A., et al. (Fermi-LAT Collaboration) 2010, ApJL, 709, L152.CrossRefGoogle Scholar
Abdo, A. A., et al. (Fermi-LAT Collaboration) 2010, ApJ, 718, 348CrossRefGoogle Scholar
Abdo, A. A., et al. (Fermi-LAT Collaboration) 2011, arXiv, 1108.1435Google Scholar
Abramowski, A., et al. (H.E.S.S. Collaboration) 2012, A&A, 537, A114.Google Scholar
Acciari, V. A., et al. (VERITAS Collaboration) 2009, Nature, 462, 770Google Scholar
Acero, F., et al. (H.E.S.S. Collaboration) 2009, Science, 326, 1080CrossRefGoogle Scholar
Actis, M., et al. 2011, Experimental Astronomy, 32, 193CrossRefGoogle Scholar
Aharonian, F. A. & Very high energy cosmic gamma radiation: a crucial window on the extreme Universe, 2004, World Scientific Publishing Company; 1st editionCrossRefGoogle Scholar
Aharonian, F., et al. (H.E.S.S. Collaboration) 2005, A&A, 432, L25.Google Scholar
Aharonian, F., et al. (H.E.S.S. Collaboration) 2006, Nature, 439, 695CrossRefGoogle Scholar
Aharonian, F., et al. (H.E.S.S. Collaboration) 2008, A&A, 481, 401Google Scholar
Aharonian, F., et al. (H.E.S.S. Collaboration) 2009, A&A, 503, 817Google Scholar
Combes, F. 1991, ARA&A, 29, 195Google Scholar
Crocker, R. M., et al. 2010, MNRAS, 413, 763CrossRefGoogle Scholar
Diehl, R., et al. 2006, Nature, 439, 45CrossRefGoogle Scholar
Domingo-Santamaría, E. & Torres, D. F., 2005, A&A, 444, 403Google Scholar
Engelbracht, C. W., et al. 1998, ApJ, 505, 639CrossRefGoogle Scholar
Farnier, C., Walter, R., & Leyder, J.C., 2011 A&A, 526A, 57.Google Scholar
Heesen, V., Beck, R., Krause, M., & Dettmar, R. J. 2011, A&A, 535, A79.Google Scholar
Hinton, J. A. & Hofmann, W. 2009, ARA&A, 47, 523Google Scholar
Immer, K., Schuller, F., Omont, A., & Menten, K. M. 2011, A&A, in pressGoogle Scholar
Kennicutt, R. C. Jr. 1998, ARA&A, 36, 189Google Scholar
Melo, V. P., et al. 2002, ApJ, 574, 709CrossRefGoogle Scholar
Lacki, B. C., et al. 2011, ApJ, 734, 107CrossRefGoogle Scholar
Laing, R. A. & Peacock, J. A. 1980, MNRAS, 190, 903CrossRefGoogle Scholar
Longair, M. S. 2011, High Energy Astrophysics Cambridge University Press; 3rd editionCrossRefGoogle Scholar
Ohm, S. & Hinton, J. A. 2012, arXiv, 1202.0260Google Scholar
Paladini, R., et al. 2007, A&A, 465, 839Google Scholar
Paglione, T. A. D., Marscher, A. P., Jackson, J. M., & Bertsch, D. L. 1996, ApJ, 460, 295CrossRefGoogle Scholar
Persic, M., Rephaeli, Y., & Arieli, Y. 2008, A&A, 486, 143Google Scholar
Pierce-Price, D., et al. 2000, ApJ, 545, L121.CrossRefGoogle Scholar
Robitaille, T. P. & Whitney, B. A. 2010, ApJ, 710, L11.CrossRefGoogle Scholar
Sakamoto, K., et al. 2011, ApJ, 735, 19CrossRefGoogle Scholar
Shimmins, A. & Wall, J. 1973, Australian J. Phys., 26, 93CrossRefGoogle Scholar
Sodroski, T. J., et al. 1995, ApJ, 452, 262CrossRefGoogle Scholar
Strong, A. W., et al. 2010, ApJL, 722, L58.CrossRefGoogle Scholar
Van Buren, D. & Greenhouse, M. A. 1994, ApJ, 431, 640CrossRefGoogle Scholar
Vink, J. 2011, arXiv, 1112.0576CrossRefGoogle Scholar
Wagner, R. M. 2008, MNRAS, 385, 11935CrossRefGoogle Scholar