Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T07:42:55.841Z Has data issue: false hasContentIssue false

HerMES: Lyman Break Galaxies Individually Detected at 0.7 ≤ z ≤ 2.0 in GOODS-N with Herschel/SPIRE

Published online by Cambridge University Press:  05 December 2011

Denis Burgarella
Affiliation:
Laboratoire d'Astrophysique de Marseille, OAMP, Université Aix-Marseille, CNRS, 38 rue Frédéric Joliot-Curie, 13388 Marseille cedex 13, France email: [email protected], [email protected]
Véronique Buat
Affiliation:
Laboratoire d'Astrophysique de Marseille, OAMP, Université Aix-Marseille, CNRS, 38 rue Frédéric Joliot-Curie, 13388 Marseille cedex 13, France email: [email protected], [email protected]
Georgios Magdis
Affiliation:
Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu - CNRS - Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As part of the Herschel Multi-tiered Extragalactic Survey we have investigated the rest-frame far-infrared (FIR) properties of a sample of more than 4800 Lyman Break Galaxies (LBGs) in the Great Observatories Origins Deep Survey North field. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z < 1.6 and one object at z = 2.0. The LBGs have been selected using color-color diagrams; the ones detected by Herschel SPIRE have redder colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. The spectral energy distributions of the objects detected in the rest-frame FIR are investigated using the code cigale to estimate physical parameters. We include far-UV (FUV) data from GALEX. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. It appears that LBGs are located in a triangle-shaped region in the AFUV vs. LogLFUV = 0 diagram limited by AFUV = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. This upper envelop can be used as upper limits for the UV dust attenuation as a function of LFUV. The limits of this region are well explained using a closed-box model, where the chemical evolution of galaxies produces metals, which in turn lead to higher dust attenuation when the galaxies age.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Buat, V. & Xu, C., 1996, A&A 306, 61Google Scholar
Burgarella, D., Buat, V., Iglesias-Páramo, J., 2005, MNRAS, 360, 1413CrossRefGoogle Scholar
Burgarella, D., Buat, V., Magdis, G., & the HerMES team, 2011, Apj, (subm.)Google Scholar
Burgarella, D., LeAAAAFloc'h, E., & Takeuchi, T. T. 2007, MNRAS, 380, 986CrossRefGoogle Scholar
Carilli, C. L., et al. , 2008, AJ, 689, 883CrossRefGoogle Scholar
Chapman, S. C., Scott, D., Steidel, C. C., et al. , 2000, MNRAS, 319, 318CrossRefGoogle Scholar
Chapman, S. C., Casey, , 2009, MNRAS 398, 1615CrossRefGoogle Scholar
Griffin, M., et al. A&A 518, L3Google Scholar
Ho, I. T., et al. , 2010, ApJ 722, 1051CrossRefGoogle Scholar
Noll, S., Burgarella, D., Giovannoli, E., et al. , 2009, A&A, 507, 1793Google Scholar
Oliver, S. J., et al. , 2010, A& A, 518, L21Google Scholar
Reddy, et al. , 2010, ApJ, 712, 1070CrossRefGoogle Scholar
Pilbratt, , et al. A&A 518, L1Google Scholar
Roseboom, I., et al. 2010, MNRAS (in press)Google Scholar
Siana, B., et al. , 2009, ApJ, 698, 1273CrossRefGoogle Scholar
Siana, B., et al. , 2008, ApJ, 689, 59CrossRefGoogle Scholar
Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., Adelberger, K. L., 1996, ApJ, 462, L17CrossRefGoogle Scholar