Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T16:50:38.726Z Has data issue: false hasContentIssue false

Helium-rich stars in globular clusters: constraints for self-enrichment by massive stars

Published online by Cambridge University Press:  23 April 2010

Thibaut Decressin
Affiliation:
Argelander Institute for Astronomy (AIfA), Auf dem Hügel 71, D-53121 Bonn, Germany email: [email protected]
G. Meynet
Affiliation:
Geneva Observatory, University of Geneva, 51 ch. des Maillettes, 1290 Versoix, Switzerland email: [email protected]
C. Charbonnel
Affiliation:
Geneva Observatory, University of Geneva, 51 ch. des Maillettes, 1290 Versoix, Switzerland email: [email protected] Laboratoire d'Astrophysique de Toulouse-Tarbes, CNRS UMR 5572, Université de Toulouse, 14 Av. E. Belin, 31400 Toulouse, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Globular clusters exhibit peculiar chemical patterns where Fe and heavy elements are constant inside a given cluster while light elements (Li to Al) show strong star-to-star variations. This pattern can be explained by self-pollution of the intracluster gas by the slow winds of fast rotating massive stars. Besides, several main sequences have been observed in several globular clusters which can be understood only with different stellar populations with distinct He content. Here we explore how these He abundances can constrain the self-enrichment in globular clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Arnould, M., Goriely, S., & Jorissen, A. 1999, A&A, 347, 572Google Scholar
Bedin, L. R., Piotto, G., Anderson, J. et al. 2004, ApJ (Letters), 605, L125CrossRefGoogle Scholar
Bonifacio, P., Pasquini, L., Molaro, P. et al. 2007, A&A, 470, 153Google Scholar
Brown, J. A. & Wallerstein, G. 1993, AJ, 106, 133CrossRefGoogle Scholar
Caloi, V. & D'Antona, F. 2005, A&A, 435, 987Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G. et al. 2006, A&A, 450, 523Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., Lucatello, S., & Momany, Y. 2007, A&A, 464, 927Google Scholar
Catelan, M., Grundahl, F., Sweigart, A. V., Valcarce, A. A. R., & Cortés, C. 2009, ApJ (Letters), 695, L97CrossRefGoogle Scholar
Cottrell, P. L. & Da Costa, G. S. 1981, ApJ (Letters), 245, L79CrossRefGoogle Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007 a, A&A, 475, 859Google Scholar
Decressin, T., Charbonnel, C., Siess, L. et al. 2009, A&A, 505, 727Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007 b, A&A, 464, 1029Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARAA, 42, 385CrossRefGoogle Scholar
Gratton, R. G., Bragaglia, A., Carretta, E. et al. 2003, A&A, 408, 529Google Scholar
Gratton, R. G., Lucatello, S., Bragaglia, A. et al. 2007, A&A, 464, 953Google Scholar
Kraft, R. P. 1994, PASP, 106, 553CrossRefGoogle Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009, A&A, 503, 545Google Scholar
Maeder, A. & Meynet, G. 2000, A&A, 361, 159Google Scholar
Meynet, G. 1993, in The Feedback of Chemical Evolution on the Stellar Content of Galaxies, ed. Alloin, D. & Stasińska, G., 40–+Google Scholar
Milone, A. P., Piotto, G., King, I. R. et al. 2009, ArXiv e-printsGoogle Scholar
Pasquini, L., Bonifacio, P., Randich, S. et al. 2007, A&A, 464, 601Google Scholar
Piotto, G., Bedin, L. R., Anderson, J. et al. 2007, ApJ (Letters), 661, L53CrossRefGoogle Scholar
Piotto, G., Villanova, S., Bedin, L. R. et al. 2005, ApJ, 621, 777CrossRefGoogle Scholar
Prantzos, N. & Charbonnel, C. 2006, A&A, 458, 135Google Scholar
Prantzos, N., Charbonnel, C., & Iliadis, C. 2007, A&A, 470, 179Google Scholar
Reimers, D. 1975, Circumstellar envelopes and mass loss of red giant stars (Problems in stellar atmospheres and envelopes.), 229–256CrossRefGoogle Scholar
Siess, L. 2006, A&A, 448, 717Google Scholar
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593Google Scholar
Smith, G. H. 2006, PASP, 118, 1225CrossRefGoogle Scholar
Townsend, R. H. D., Owocki, S. P., & Howarth, I. D. 2004, MNRAS, 350, 189CrossRefGoogle Scholar
VandenBerg, D. A. & Clem, J. L. 2003, AJ, 126, 778CrossRefGoogle Scholar
Ventura, P. & D'Antona, F. 2008 a, MNRAS, 385, 2034CrossRefGoogle Scholar
Ventura, P. & D'Antona, F. 2008 b, A&A, 479, 805Google Scholar
Ventura, P. & D'Antona, F. 2009, A&A, 499, 835Google Scholar
Villanova, S., Piotto, G., & Gratton, R. G. 2009, A&A, 499, 755Google Scholar
Villanova, S., Piotto, G., King, I. R. et al. 2007, ApJ, 663, 296CrossRefGoogle Scholar
Wallerstein, G., Leep, E. M., & Oke, J. B. 1987, AJ, 93, 1137CrossRefGoogle Scholar