Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T23:29:37.089Z Has data issue: false hasContentIssue false

Heliosphere in the Local Interstellar Medium

Published online by Cambridge University Press:  20 January 2023

Nikolai V. Pogorelov*
Affiliation:
Department of Space Science and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sun moves with respect to the local interstellar medium (LISM) and modifies its properties to heliocentric distances as large as 1 pc. The solar wind (SW) is affected by penetration of the LISM neutral particles, especially H and He atoms. Charge exchange between the LISM atoms and SW ions creates pickup ions (PUIs) and secondary neutral atoms that can propagate deep into the LISM. Neutral atoms measured at 1 au can provide us with valuable information on the properties of pristine LISM. Voyager 1 and 2 spacecraft perform in situ measurements of the LISM perturbed by the presence of the heliosphere and relate them to the unperturbed region. We discuss observational data and numerical simulations that shed light onto the mutual influence of the SW and LISM. Physical phenomena accompanying the SW–LISM interaction are discussed, including the coupling of the heliospheric and interstellar magnetic field at the heliopause.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Arge, C. N., Henney, C. J., Hernandez, I. G., et al. 2013, in AIP Conference Series, Vol. 1539, Solar Wind 13, ed. Zank, G. P. & et al., 11–14Google Scholar
Baranov, V. B., & Malama, Y. G. 1993, JGR, 98, 15157 Google Scholar
Borovikov, S. N., Pogorelov, N. V., Burlaga, L. F., & Richardson, J. D. 2011, ApJL, 728, L21 CrossRefGoogle Scholar
Borovikov, S. N., Pogorelov, N. V., & Ebert, R. W. 2012, ApJ, 750, 42 Google Scholar
Burlaga, L., Ness, N. F., Berdichevsky, D., et al. 2019, Nature Ast., 3, 1007 Google Scholar
Burlaga, L. F., Ness, N. F., Gurnett, D. A., & Kurth, W. S. 2013, ApJL, 778Google Scholar
Bzowski, M., Mobius, E., Tarnopolski, S., Izmodenov, V., & Gloeckler, G. 2009, SSR, 143, 177 CrossRefGoogle Scholar
Cairns, I. H. 1987, JGR, 92, 2329 CrossRefGoogle Scholar
Cairns, I. H., & Fuselier, S. A. 2017, ApJ, 834, 197 CrossRefGoogle Scholar
Cairns, I. H., & Zank, G. P. 2002, Geophys. Res. Lett., 29, 47 CrossRefGoogle Scholar
Caplan, R. M., Downs, C., Linker, J. A., & Mikic, Z. 2021, ApJ, 915, 44 CrossRefGoogle Scholar
Chalov, S. V., & Fahr, H. J. 2000, A&A, 360, 381 Google Scholar
Colaninno, R. C., & Vourlidas, A. 2009, ApJ, 698, 852 Google Scholar
Czechowski, A., Hilchenbach, M., Hsieh, K. C., Kallenbach, R., & Kóta, J. 2006, ApJL, 647, L69 CrossRefGoogle Scholar
Czechowski, A., Strumik, M., Grygorczuk, J., et al. 2010, A&A, 516, A17 Google Scholar
DeStefano, A. M., & Heerikhuisen, J. 2017, in J. Phys. Conf. Ser., Vol. 837, 012013CrossRefGoogle Scholar
DeStefano, A. M., & Heerikhuisen, J. 2020, Physics of Plasmas, 27, 032901 CrossRefGoogle Scholar
Dissauer, K., Veronig, A. M., Temmer, M., & Podladchikova, T. 2019, ApJ, 874, 123 CrossRefGoogle Scholar
Filbert, P. C., & Kellogg, P. J. 1979, JGR, 84, 1369 Google Scholar
Fraternale, F., & Pogorelov, N. V. 2021, ApJ, 906, 75 Google Scholar
Fraternale, F., Pogorelov, N. V., & Heerikhuisen, J. 2021, ApJL, 921, L24 Google Scholar
Gedalin, M., Pogorelov, N. V., & Roytershteyn, V. 2020, ApJ, 889, 116 CrossRefGoogle Scholar
Gedalin, M., Pogorelov, N. V., & Roytershteyn, V. 2021 a, ApJ, 910, 107CrossRefGoogle Scholar
Gedalin, M., Pogorelov, N. V., & Roytershteyn, V. 2021 b, ApJ, 916, 57CrossRefGoogle Scholar
Gopalswamy, N., Akiyama, S., Yashiro, S., & Xie, H. 2018, JASTP, 180, 35 CrossRefGoogle Scholar
Gruntman, M. A. 1982, Soviet Astronomy Letters, 8, 24 Google Scholar
Gurnett, D. A., Kurth, W. S., Allendorf, S. C., & Poynter, R. L. 1993, Science, 262, 199 CrossRefGoogle Scholar
Gurnett, D. A., Kurth, W. S., Burlaga, L. F., & Ness, N. F. 2013, Science, 341, 1489 CrossRefGoogle Scholar
Gurnett, D. A., Kurth, W. S., Stone, E. C., et al. 2015, ApJ, 809Google Scholar
Heerikhuisen, J., Zirnstein, E., & Pogorelov, N. 2015, JGR, 120, 1516 Google Scholar
Heerikhuisen, J., Zirnstein, E. J., Pogorelov, N. V., Zank, G. P., & Desai, M. 2019, ApJ, 874, 76 CrossRefGoogle Scholar
Hilchenbach, M., Hsieh, K. C., Hovestadt, D., et al. 1998, ApJ, 503, 916 CrossRefGoogle Scholar
Isavnin, A. 2016, ApJ, 833, 267 CrossRefGoogle Scholar
Izmodenov, V. V., & Alexashov, D. B. 2020, A&A, 633, L12 Google Scholar
Izmodenov, V. V., Malama, Y. G., Ruderman, M. S., et al. 2009, SSR, 146, 329 Google Scholar
Kim, T. K., Pogorelov, N. V., & Burlaga, L. F. 2017, ApJL, 843Google Scholar
Kim, T. K., Pogorelov, N. V., Zank, G. P., Elliott, H. A., & McComas, D. J. 2016, ApJL, 832, 72 CrossRefGoogle Scholar
Kornbleuth, M., Opher, M., Michael, A. T., et al. 2020, ApJL, 895, L26 Google Scholar
Krimigis, S. M., Mitchell, D. G., Roelof, E. C., Hsieh, K. C., & McComas, D. J. 2009, Science, 326, 971 Google Scholar
Luoni, M. L., Démoulin, P., Mandrini, C. H., & van Driel-Gesztelyi, L. 2011, Solar Physics, 270, 45 Google Scholar
McComas, D. J., Bzowski, M., Fuselier, S. A., et al. 2015, ApJS, 220, 22 CrossRefGoogle Scholar
McComas, D. J., Zirnstein, E. J., Bzowski, M., et al. 2017 a, ApJS, 233, 8 CrossRefGoogle Scholar
McComas, D. J., Zirnstein, E. J., Bzowski, M., et al. 2017 b, ApJS, 229, 41 Google Scholar
McComas, D. J., Christian, E. R., Schwadron, N. A., et al. 2018, SSR, 214, 116 Google Scholar
Opher, M., Drake, J. F., Zieger, B., & Gombosi, T. I. 2015, ApJL, 800CrossRefGoogle Scholar
Opher, M., Loeb, A., Drake, J., & Toth, G. 2020, Nature Ast., 4, 675 CrossRefGoogle Scholar
Parker, E. N. 1963, Interplanetary dynamical processes (Interscience Publishers)Google Scholar
Pogorelov, N. V., Bedford, M. C., Kryukov, I. A., & Zank, G. P. 2016, J. Phys. Conf. Series, 767CrossRefGoogle Scholar
Pogorelov, N. V., Borovikov, S., Heerikhuisen, J., et al. 2014, in Proc. 2014 Ann. Conf. on Extreme Science and Engineering Discovery Environment, XSEDE ’14, 22:1–22:8Google Scholar
Pogorelov, N. V., Borovikov, S. N., Heerikhuisen, J., & Zhang, M. 2015, ApJL, 812Google Scholar
Pogorelov, N. V., Fraternale, F., Kim, T. K., Burlaga, L. F., & Gurnett, D. A. 2021, ApJ, 917, L20 CrossRefGoogle Scholar
Pogorelov, N. V., Heerikhuisen, J., Roytershteyn, V., et al. 2017 a, ApJ, 845CrossRefGoogle Scholar
Pogorelov, N. V., Heerikhuisen, J., Zank, G. P., & Borovikov, S. N. 2009, SSR, 143, 31 Google Scholar
Pogorelov, N. V., Suess, S. T., Borovikov, S. N., et al. 2013, ApJ, 772Google Scholar
Pogorelov, N. V., Fichtner, H., Czechowski, A., et al. 2017 b, SSR, 212, 193Google Scholar
Qiu, J., Hu, Q., Howard, T. A., & Yurchyshyn, V. B. 2007, ApJ, 659, 758 CrossRefGoogle Scholar
Reisenfeld, D. B., Bzowski, M., Funsten, H. O., et al. 2021, ApJS, 254, 40 CrossRefGoogle Scholar
Riley, P., Lionello, R., Caplan, R. M., et al. 2021, A&A, 650, A19 CrossRefGoogle Scholar
Roytershteyn, V., Pogorelov, N. V., & Heerikhuisen, J. 2019, ApJ, 881, 65 Google Scholar
Schrijver, C. J., & De Rosa, M. L. 2003, Solar Physics, 212, 165 Google Scholar
Singh, T., Kim, T. K., Pogorelov, N. V., & Arge, C. N. 2020 a, Space Weather, 18, e02405 Google Scholar
Singh, T., Yalim, M. S., Pogorelov, N. V., & Gopalswamy, N. 2019, ApJL, 875, L17 CrossRefGoogle Scholar
Singh, T., Yalim, M. S., Pogorelov, N. V., & Gopalswamy, N. 2020 b, ApJ, 894, 49 Google Scholar
Steinolfson, R. S., Pizzo, V. J., & Holzer, T. 1994, Geophys. Res. Lett., 21, 245 Google Scholar
Stone, E. C., Cummings, A. C., Heikkila, B. C., & Lal, N. 2019, Nature Ast., 3, 1013 CrossRefGoogle Scholar
Stone, E. C., Cummings, A. C., McDonald, F. B., et al. 2005, Science, 309, 2017 CrossRefGoogle ScholarPubMed
Stone, E. C., Cummings, A. C., McDonald, F. B., et al. 2008, Nature, 454, 71 Google Scholar
Stone, E. C., Cummings, A. C., McDonald, F. B., et al. 2013, Science, 341, 150 CrossRefGoogle Scholar
Swaczyna, P., McComas, D. J., Zirnstein, E. J., et al. 2020, Astrophys. J., 903, 48 Google Scholar
Thernisien, A., Vourlidas, A., & Howard, R. A. 2009, Solar Physics, 256, 111 CrossRefGoogle Scholar
Tsallis, C. 2009, Introduction to nonextensive statistical mechanics: approaching a complex world (Springer Science & Business Media)Google Scholar
Upton, L., & Hathaway, D. H. 2014, ApJ, 780, 5 Google Scholar
Usmanov, A. V., Goldstein, M. L., & Matthaeus, W. H. 2016, ApJ, 820, 17 Google Scholar
Vasyliunas, V. M., & Siscoe, G. L. 1976, JGR, 81, 1247 Google Scholar
Wood, B. E., Müller, H.-R., & Möbius, E. 2019, ApJ, 881, 55 CrossRefGoogle Scholar
Wu, Y., Florinski, V., & Guo, X. 2016, ApJ, 832, 61 CrossRefGoogle Scholar
Yu, G. 1974, ApJ, 194, 187 Google Scholar
Zank, G. P. 1999, SSR, 89, 413 CrossRefGoogle Scholar
Zank, G. P. 2015, ARAA, 53, 449 CrossRefGoogle Scholar
Zank, G. P., Heerikhuisen, J., Pogorelov, N. V., Burrows, R., & McComas, D. 2010, ApJ, 708, 1092 Google Scholar