Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:57:33.505Z Has data issue: false hasContentIssue false

Heavy ion irradiation of astrophysical ice analogs

Published online by Cambridge University Press:  06 April 2010

Eduardo Seperuelo Duarte
Affiliation:
Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS/ENSICAEN/Universit de Caen-Basse Normandie), CIMAP-CIRIL- Ganil, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05, France Physics Department, Pontifícia Universidade Católica, Rua Marquês de S. Vicente 225, 22453-900 Rio de Janeiro, Brazil Grupo de Física e Astronomia - CEFET/Química de Nilópolis, R. Lúcio Tavares, 1045, Centro, 26530-060, Nilópolis, Brazil
Alicja Domaracka
Affiliation:
Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS/ENSICAEN/Universit de Caen-Basse Normandie), CIMAP-CIRIL- Ganil, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05, France
Philippe Boduch
Affiliation:
Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS/ENSICAEN/Universit de Caen-Basse Normandie), CIMAP-CIRIL- Ganil, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05, France
Hermann Rothard
Affiliation:
Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS/ENSICAEN/Universit de Caen-Basse Normandie), CIMAP-CIRIL- Ganil, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05, France
Emmanuel Balanzat
Affiliation:
Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS/ENSICAEN/Universit de Caen-Basse Normandie), CIMAP-CIRIL- Ganil, Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05, France
Emmanuel Dartois
Affiliation:
Institut d'Astrophysique Spatiale, Astrochimie Expérimentale, UMR-8617 Université Paris-Sud, bâtiment 121, F-91405 Orsay, France
Sergio Pilling
Affiliation:
Physics Department, Pontifícia Universidade Católica, Rua Marquês de S. Vicente 225, 22453-900 Rio de Janeiro, Brazil Grupo de Física e Astronomia - CEFET/Química de Nilópolis, R. Lúcio Tavares, 1045, Centro, 26530-060, Nilópolis, Brazil
Lucio Farenzena
Affiliation:
Physics Department, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
Enio Frota da Silveira
Affiliation:
Physics Department, Pontifícia Universidade Católica, Rua Marquês de S. Vicente 225, 22453-900 Rio de Janeiro, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Icy grain mantles consist of small molecules containing hydrogen, carbon, oxygen and nitrogen atoms (e.g. H2O, CO, CO2, NH3). Such ices, present in different astrophysical environments (giant planets satellites, comets, dense clouds, and protoplanetary disks), are subjected to irradiation of different energetic particles: UV radiation, ion bombardment (solar and stellar wind as well as galactic cosmic rays), and secondary electrons due to cosmic ray ionization of H2. The interaction of these particles with astrophysical ice analogs has been the object of research over the last decades. However, there is a lack of information on the effects induced by the heavy ion component of cosmic rays in the electronic energy loss regime. The aim of the present work is to simulate of the astrophysical environment where ice mantles are exposed to the heavy ion cosmic ray irradiation.

Sample ice films at 13K were irradiated by nickel ions with energies in the 1-10 MeV/u range and analyzed by means of FTIR spectrometry. Nickel ions were used because their energy deposition is similar to that deposited by iron ions, which are particularly abundant cosmic rays amongst the heaviest ones.

In this work the effects caused by nickel ions on condensed gases are studied (destruction and production of molecules as well as associated cross sections, sputtering yields) and compared with respective values for light ions and UV photons.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Brown, W. L., Augustyniak, W. M., Marcantonio, K. J., Simmons, E. H., Boring, J. W., Johnson, R. E., & Reimann, C. T. 1984, Nucl. Instr. Meth. B, 1, 307CrossRefGoogle Scholar
Dartois, E. 2005, Space Sci. Rev., 119, 293CrossRefGoogle Scholar
Farenzena, L. S., Martinez, R., Iza, P., Ponciano, C. R., et al. 2006, Int. J. Mass Spectrom., 251, 1CrossRefGoogle Scholar
Gerakines, P. A. & Moore, M. H. 2001, Icarus, 154, 372CrossRefGoogle Scholar
Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2006, ApJSS, 163, 184CrossRefGoogle Scholar
Karrer, R., Bochsler, P., Giammanco, C., et al. 2007, Space Science Reviews, 130, 317CrossRefGoogle Scholar
Palumbo, M. E., Leto, P., Siringo, C., & Trigilio, C. 2008, ApJ, 685, 1033CrossRefGoogle Scholar
Pilling, S., SeperueloDuarte, E. Duarte, E., da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P. 2009, A&A, submittedGoogle Scholar
Ponciano, C. R., Martinez, R., Farenzena, L. S., Iza, P., Homem, M. G. P., Naves de Brito, A., da Silveira, E. F., & Wien, K. 2006, J. Am. Mass Spectrom., 17, 1120CrossRefGoogle Scholar
Seperuelo Duarte, E., Boduch, P., Rothard, H., et al. 2009, A&A, 502, 599Google Scholar
Trottier, A. & Robert, L. B. 2004, ApJ, 612, 1214CrossRefGoogle Scholar