Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T10:55:58.283Z Has data issue: false hasContentIssue false

Heating of coronal active regions

Published online by Cambridge University Press:  26 August 2011

Daniel O. Gómez*
Affiliation:
Instituto de Astronomía y Física del Espacio, C.C. 67 - Suc. 28, (1428) Buenos Aires, Argentina - email: [email protected] Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria, (1428) Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations of coronal loops in solar active regions show that their heating must be a truly dynamic process. Even though it seems clear that the energy source is the magnetic field that confines the coronal plasma, the details of how it dissipates are still a matter of debate. In this presentation we review the theoretical models of coronal heating, which have been traditionally clasified as DC or AC depending on the electrodynamic response of the loops to the photospheric driving motions.

Also, we show results from numerical simulations of the internal dynamics of coronal loops within the framework of the reduced MHD approximation. These simulations indicate that the application of a stationary velocity field at the photospheric boundary leads to a turbulent stationary regime after several photospheric turnover times. Once this turbulent regime is set, both DC and AC stresses dissipate at faster rates as a result of a direct energy cascade.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Aschwanden, M. J. 2004, in Physics of the Solar Corona. An Introduction, Springer-Verlag, Berlin.Google Scholar
Aulanier, G. 2011, in “Proc. IAU Symp. 273: Physics of the Sun and Star spots”, in press.Google Scholar
Demoulin, P., van Driel-Gesztelyi, L., Mandrini, C. H., Klimchuk, J. A., & Harra, L. 2003, Astrophys. J., 586, 592.CrossRefGoogle Scholar
Dmitruk, P. & Gómez, D. O. 1997, Astrophys. J., 484, L83.CrossRefGoogle Scholar
Dmitruk, P., Gómez, D. O., & DeLuca, E. 1998, Astrophys. J., 505, 974.CrossRefGoogle Scholar
Dmitruk, P. & Gómez, D. O. 1999, Astrophys. J., 527, L63.CrossRefGoogle Scholar
Galsgaard, K. & Nordlund, A. 1996, J. Geophys. Res., 101, 13445.CrossRefGoogle Scholar
Georgoulis, M., Velli, M., & Einaudi, G. 1998, Astrophys. J., 497, 957.CrossRefGoogle Scholar
Gómez, D. O. 1990, Fund. Cosmic Phys., 14, 361.Google Scholar
Gómez, D. O. & Ferro Fontán, C. 1988, Solar Phys., 116 33.CrossRefGoogle Scholar
Gómez, D. O. & Ferro Fontán, C. 1992, Astrophys. J., 394, 662.CrossRefGoogle Scholar
Gómez, D. O. & Dmitruk, P. 2008, in “Proc. IAU Symp. 247: Waves and Oscillations in the Solar Atmosphere”, (Eds. Erdelyi, R. & Mendoza-Briceño, C.A.), 269.Google Scholar
Gudiksen, B. V. & Nordlund, A. 2002, Astrophys. J., 572, L113.CrossRefGoogle Scholar
Hendrix, D. L. & van Hoven, G. 1996, Astrophys. J., 467, 887.CrossRefGoogle Scholar
Heyvaerts, J. & Priest, E. R. 1992, Astrophys. J., 390, 297.CrossRefGoogle Scholar
Inverarity, G. W. & Priest, E. R. 1995, Astron. Astrophys, 302, 567.Google Scholar
Longcope, D. W. & Sudan, R. N. 1994, Astrophys. J., 437, 491.CrossRefGoogle Scholar
Mandrini, C. H., Demoulin, P., & Klimchuk, J. A. 2000, Astrophys. J., 530, 999.CrossRefGoogle Scholar
Mikić, Z., Schnack, D. D. & van Hoven, G. 1989, Astrophys. J., 338, 1148.CrossRefGoogle Scholar
Narain, U. & Ulmschneider, P. 1990, Space Sci. Rev., 54, 377.CrossRefGoogle Scholar
Narain, U. & Ulmschneider, P. 1996, Space Sci. Rev., 75, 453.CrossRefGoogle Scholar
Parker, E. N. 1972, Astrophys. J., 174, 499.CrossRefGoogle Scholar
Parker, E. N. 1988, Astrophys. J., 330, 474.CrossRefGoogle Scholar
Patsourakos, S. & Klimchuk, J. A. 2009, Astrophys. J., 696, 760.CrossRefGoogle Scholar
Rappazzo, A. F., Velli, M., Einaudi, G., & Dahlburg, R. B. 2008, Astrophys. J., 677, 1348.CrossRefGoogle Scholar
Strauss, H. 1976, Phys. Fluids, 19, 134CrossRefGoogle Scholar
van Ballegooijen, A. A. 1986, Astrophys. J., 311, 1001.CrossRefGoogle Scholar
Zirker, J. B. 1993, Solar Phys., 148, 43.CrossRefGoogle Scholar