Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T10:57:33.686Z Has data issue: false hasContentIssue false

Hall Effect in Neutron Star Crusts

Published online by Cambridge University Press:  07 August 2014

K. N. Gourgouliatos
Affiliation:
Department of Physics, McGill University, 3600 rue University, Montréal, Québec H3A 2T8, Canada email: [email protected]
A. Cumming
Affiliation:
Department of Physics, McGill University, 3600 rue University, Montréal, Québec H3A 2T8, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The crust of Neutron Stars can be approximated by a highly conducting solid crystal lattice. The evolution of the magnetic field in the crust is mediated through Hall effect, namely the electric current is carried by the free electrons of the lattice and the magnetic field lines are advected by the electron fluid. Here, we present the results of a time-dependent evolution code which shows the effect Hall drift has in the large-scale evolution of the magnetic field. In particular we link analytical predictions with simulation results. We find that there are two basic evolutionary paths, depending on the initial conditions compared to Hall equilibrium. We also show the effect axial symmetry combined with density gradient have on suppressing turbulent cascade.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Biskamp, D., Schwarz, E., & Drake, J. F. 1996, Physical Review Letters, 76, 1264Google Scholar
Cho, J. & Lazarian, A. 2009, ApJ, 701, 236Google Scholar
Ciolfi, R. & Rezzolla, L. 2013, MNRAS, 435, L43Google Scholar
Cumming, A., Arras, P., & Zweibel, E. 2004, ApJ, 609, 999Google Scholar
Goldreich, P. & Reisenegger, A. 1992, ApJ, 395, 250Google Scholar
Gourgouliatos, K. N., Cumming, A., Reisenegger, A., et al. 2013, MNRAS, 434, 2480Google Scholar
Gourgouliatos, K. N., Cumming, A., Lyutikov, M., & Reisenegger, A. 2013, arXiv:1305.0149Google Scholar
Hollerbach, R. & Rüdiger, G. 2002, MNRAS, 337, 216Google Scholar
Hollerbach, R. & Rüdiger, G. 2004, MNRAS, 347, 1273CrossRefGoogle Scholar
Jones, P. B. 1988, MNRAS, 233, 875Google Scholar
Kojima, Y. & Kisaka, S. 2012, MNRAS, 421, 2722CrossRefGoogle Scholar
Olausen, S. A. & Kaspi, V. M. 2013, arXiv:1309.4167Google Scholar
Pons, J. A. & Geppert, U. 2007, A&A, 470, 303Google Scholar
Reisenegger, A., Benguria, R., Prieto, J. P., Araya, P. A., & Lai, D. 2007, A&A, 472, 233Google Scholar
Shalybkov, D. A. & Urpin, V. A. 1997, A&A, 321, 685Google Scholar
Vainshtein, S. I., Chitre, S. M., & Olinto, A. V. 2000, Phys. Rev. E, 61, 4422Google Scholar
Viganò, D., Pons, J. A., & Miralles, J. A. 2012, Computer Physics Communications, 183, 2042CrossRefGoogle Scholar
Viganò, D., Rea, N., Pons, J. A., et al. 2013, MNRAS, 434, 123CrossRefGoogle Scholar
Wareing, C. J. & Hollerbach, R. 2009, A&A, 508, L39Google Scholar