Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T17:20:16.822Z Has data issue: false hasContentIssue false

Hadronic jet models today

Published online by Cambridge University Press:  24 February 2011

Marek Sikora*
Affiliation:
Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The matter content of relativistic jets in AGNs is dominated by a mixture of protons, electrons, and positrons. During dissipative events these particles tap a significant portion of the internal and/or kinetic energy of the jet and convert it into electromagnetic radiation. While leptons – even those with only mildly relativistic energies – can radiate efficiently, protons need to be accelerated up to energies exceeding 1016–19 eV to dissipate radiatively a significant amount of energy via either trigerring pair cascades or direct synchrotron emission. Here I review various constraints imposed on the role of hadronic non-adiabatic cooling processes in shaping the high energy spectra of blazars. It will be argued that protons, despite being efficiently accelerated and presumably playing a crucial role in jet dynamics and dissipation of the jet kinetic energy to the internal energy of electrons and positrons, are more likely to remain radiatively passive in AGN jets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abdo, A. A., et al. 2010, Nature, 463, 919Google Scholar
Aharonian, F. A. 2000, New Astron., 5, 377CrossRefGoogle Scholar
Amato, E. & Arons, J. 2006, ApJ, 653, 325CrossRefGoogle Scholar
Amano, T. & Hoshino, M. 2009, ApJ, 690, 244CrossRefGoogle Scholar
Beckmann, V., Ricci, C., & Soldi, S. 2010, arXiv: 0912.2254Google Scholar
Begelman, M. C., Rudak, B., & Sikora, M. 1990, ApJ, 362, 38CrossRefGoogle Scholar
Blandford, R. D. 1976, MNRAS, 176, 465Google Scholar
Blundell, K. M., Fabian, A. C., Crawford, C. S., et al. 2006, ApJ, 644, L13CrossRefGoogle Scholar
Camenzind, M. 1986, A&A, 156, 137Google Scholar
Ghisellini, G., Della Ceca, R., Volonteri, M., et al. 2010, MNRAS, 405, 387Google Scholar
Ghisellini, G. & Tavecchio, F. 2010, arXiv: 1008.1982Google Scholar
Godfrey, L. E. H., Bicknell, G. V., Lovell, J. E. J., et al. 2009, ApJ, 695, 707Google Scholar
Komissarov, S. S. 2010, arXiv: 1006.2242Google Scholar
Komissarov, S. S., Barkov, M. V., Vlahakis, N., & Königl, A. 2007, MNRAS, 380, 51Google Scholar
Lovelace, R. V. E. 1976, Nature, 262, 649Google Scholar
Lyubrasky, Y. E. 2010, MNRAS, 402, 353CrossRefGoogle Scholar
Mannheim, 1993, A&A, 269, 67Google Scholar
Mannheim, K. & Biermann, P. L. 1992, A&A, 253, L21Google Scholar
McKinney, J. C. & Blandford, R. D. 2009, MNRAS, 394, L126CrossRefGoogle Scholar
McNaron-Brown, K., Johnson, W. N., Jung, G. V., et al. 1995, Apj, 451, 575CrossRefGoogle Scholar
Moderski, R., Sikora, M., & Błażejowski, M. 2003, A&A, 406, 855Google Scholar
Park, K. & Blackman, E. G. 2010, MNRAS, 403, 1993CrossRefGoogle Scholar
Phinney, E. E. 1983, PhD Thesis, Cambridge UniversityGoogle Scholar
Rachen, J. P. & Mészáros, P. 1998, Phys.Rev.D, 58, 123005CrossRefGoogle Scholar
Rieger, F. M., Bosch-Ramon, V., & Duffy, P. 2007, ApSS, 309, 119Google Scholar
Sikora, M., Begelman, M. C., & Rees, M. J. 1994, ApJ, 421, 153CrossRefGoogle Scholar
Sikora, M., Kirk, J., Begelman, M., & Schneider, P. 1987, ApJ, 320, L81CrossRefGoogle Scholar
Sikora, M. & Madejski, 2000, ApJ, 534, 109CrossRefGoogle Scholar
Sikora, M., Stawarz, Ł., Moderski, M., Nalewajko, K., & Madejski, G. M. 2009, ApJ, 704, 38CrossRefGoogle Scholar
Sironi, L. & Spitkovsky, A. 2010, arXiv: 1009.0024Google Scholar
Stawarz, Ł., Cheung, C. C., Harris, D. E., & Ostrowski, M. 2007, ApJ, 662, 213CrossRefGoogle Scholar
Tchekhovskoy, A., McKinney, J. C., & Narayan, R. 2009, ApJ, 699, 1789CrossRefGoogle Scholar
Vitrishchak, V. M., Gabuzda, D. C., Algaba, , et al. 2008, MNRAS, 391, 124Google Scholar
Zhang, S., Collmar, W., & Schönfelder, V. 2005 A&A, 444, 767Google Scholar