Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T16:58:04.415Z Has data issue: false hasContentIssue false

Group infall of substructures on to a Milky Way-like dark halo

Published online by Cambridge University Press:  01 June 2008

Yang-Shyang Li
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, the Netherlands email: [email protected]; [email protected]
Amina Helmi
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, the Netherlands email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report the discovery that substructures/subhaloes of a galaxy-size halo tend to fall in together in groups in cosmological simulations, something that may explain the oddity of the MW satellite distribution. The original clustering at the time of infall is still discernible in the angular momenta of the subhaloes even for events which took place up to eight Gyrs ago, z ~ 1. This phenomenon appears to be rather common since at least 1/3 of the present-day subhaloes have fallen in groups in our simulations. Hence, this may well explain the Lynden-Bell & Lynden-Bell ghostly streams. We have also found that the probability of building up a flattened distribution similar to the MW satellites is as high as ~ 80% if the MW satellites were from only one group and ~ 20% when five groups are involved. Therefore, we conclude that the ‘peculiar’ distribution of satellites around the MW can be expected with the CDM structure formation theory. This non-random assignment of satellites to subhaloes implies an environmental dependence on whether these low-mass objects are able to form stars, possibly related to the nature of reionization in the early Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bekki, K. & Chiba, M. 2005, MNRAS, 356, 680CrossRefGoogle Scholar
Gao, L., White, S. D. M., Jenkins, A., Stoehr, F., & Springel, V. 2004, MNRAS, 355, 819CrossRefGoogle Scholar
Helmi, A. et al. 2006, ApJ, 651, L121CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006, ApJ, 652, 1213CrossRefGoogle Scholar
Kamionkowski, M. & Liddle, A. R. 2000, Phys. Rev. Lett., 84, 4525CrossRefGoogle Scholar
Knebe, A., Gill, S. P. D., Gibson, B. K., Lewis, G. F., Ibata, R. A., & Dopita, M. A. 2004, ApJ, 603, 7CrossRefGoogle Scholar
Kroupa, P., Theis, C., & Boily, M. 2005, A&A, 431, 517Google Scholar
Kroupa, P. 1997, New Astron., 2, 139CrossRefGoogle Scholar
Li, Y.-S. & Helmi, A. 2008, MNRAS, 385, 1365CrossRefGoogle Scholar
Libeskind, N. I., Cole, S., Frenk, C. S., Okamoto, T., & Jenkins, A. 2007, MNRAS, 374, 16CrossRefGoogle Scholar
Lynden-Bell, D. & Lynden-Bell, R. M. 1995, MNRAS, 275, 429CrossRefGoogle Scholar
Metz, M., Kroupa, P., & Jerjen, H. 2007, MNRAS, 374, 1125CrossRefGoogle Scholar
Mashchenko, S., Carignan, C., & Bouchard, A. 2004, MNRAS, 352, 168CrossRefGoogle Scholar
Scannapieco, E., Thacker, R. J., & Davis, M. 2001, ApJ, 557, 605CrossRefGoogle Scholar
Stoehr, F., White, S. D. M., Tormen, G., & Springel, V. 2002, MNRAS, 335, L84CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105CrossRefGoogle Scholar
Stoehr, F. 2006, MNRAS, 365, 147CrossRefGoogle Scholar
Weinmann, S. M., Macció, A. V., Iliev, I. T., Mellema, G., & Moore, B. 2007, MNRAS, 381, 367CrossRefGoogle Scholar
Zentner, A. R., Kravtsov, A. V., Gnedin, O. Y., & Klypin, A. A. 2005, ApJ, 629, 219CrossRefGoogle Scholar