Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:17:00.937Z Has data issue: false hasContentIssue false

The Grand Tack model: a critical review

Published online by Cambridge University Press:  05 January 2015

Sean N. Raymond
Affiliation:
Laboratoire d'Astrophysique de Bordeaux, CNRS and Université de Bordeaux, UMR 5804, F-33270 Floirac, France. email: [email protected]
Alessandro Morbidelli
Affiliation:
Observatoire de la Cote d'Azur, Laboratoire Lagrange, Bd. de l'Observatoire, B. P. 4229, F-06304 Nice Cedex 4, France. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The “Grand Tack” model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or “tack” point was at ~ 1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~ 1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System.

Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies – including the D/H ratios of Saturn's satellites – do not refute the model. We discuss how alternate models for the formation of the terrestrial planets each suffer from an internal inconsistency and/or place a strong and very specific requirement on the properties of the protoplanetary disk.

We conclude that the Grand Tack model remains viable and consistent with our current understanding of planet formation. Nonetheless, we encourage additional tests of the Grand Tack as well as the construction of alternate models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abbas, M. M., et al., 2010, ApJ, 708, 342CrossRefGoogle Scholar
Alexander, C. M. O.'., Bowden, R., Fogel, M. L., Howard, K. T., Herd, C. D. K., & Nittler, L. R., 2012, Science, 337, 721CrossRefGoogle Scholar
Alexander, R., Pascucci, I., Andrews, S., Armitage, P., & Cieza, L., 2013, arXiv, arXiv:1311.1819Google Scholar
Armitage, P. J., 2011, ARA&A, 49, 195Google Scholar
Ayliffe, B. A. & Bate, M. R., 2009, MNRAS, 397, 657CrossRefGoogle Scholar
Bitsch, B., Morbidelli, A., Lega, E., & Crida, A., 2014, A&A, 564, A135Google Scholar
Bockelée-Morvan, D., et al., 2012, A&A, 544, L15Google Scholar
Brasser, R. & Morbidelli, A., 2013, Icarus, 225, 40CrossRefGoogle Scholar
Campins, H., et al., 2010, Nature, 464, 1320CrossRefGoogle Scholar
Chambers, J. E., 2001, Icarus, 152, 205CrossRefGoogle Scholar
Chambers, J. E. & Wetherill, G. W., 2001, M&PS, 36, 381Google Scholar
Cossou, C., Raymond, S. N., Hersant, F., & Pierens, A., 2014, arXiv, arXiv:1407.6011Google Scholar
Coustenis, A., et al., 2008, Icarus, 197, 539CrossRefGoogle Scholar
D'Angelo, G. & Marzari, F., 2012, ApJ, 757, 50CrossRefGoogle Scholar
Dawson, R. I. & Murray-Clay, R., 2012, ApJ, 750, 43CrossRefGoogle Scholar
DeMeo, F. E. & Carry, B., 2014, Nature, 505, 629CrossRefGoogle Scholar
Duprat, J., et al., 2010, Science, 328, 742CrossRefGoogle Scholar
Fujii, Y. I., Okuzumi, S., & Inutsuka, S.-i., 2011, ApJ, 743, 53CrossRefGoogle Scholar
Fischer, R. A. & Ciesla, F. J., 2014, E & PSL, 392, 28Google Scholar
Gladman, B. J., et al., 1997, Science, 277, 197CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A., 2005, Nature, 435, 466CrossRefGoogle Scholar
Gounelle, M., Spurný, P., & Bland, P. A., 2006, M&PS, 41, 135Google Scholar
Gradie, J. & Tedesco, E., 1982, Science, 216, 1405CrossRefGoogle Scholar
Hansen, B. M. S., 2009, ApJ, 703, 1131CrossRefGoogle Scholar
Hartogh, P., et al., 2011, Nature, 478, 218CrossRefGoogle Scholar
Ikoma, M., Nakazawa, K., & Emori, H., 2000, ApJ, 537, 1013CrossRefGoogle Scholar
Izidoro, A., Haghighipour, N., Winter, O. C., & Tsuchida, M., 2014, ApJ, 782, 31CrossRefGoogle Scholar
Jacobson, S. A. & Morbidelli, A., 2014, arXiv, arXiv:1406.2697Google Scholar
Jin, L., Arnett, W. D., Sui, N., & Wang, X., 2008, ApJ, 674, L105CrossRefGoogle Scholar
Küppers, M., et al., 2014, Nature, 505, 525CrossRefGoogle Scholar
Kley, W. & Nelson, R. P., 2012, ARA&A, 50, 211Google Scholar
Kobayashi, H. & Dauphas, N., 2013, Icarus, 225, 122CrossRefGoogle Scholar
Lega, E., Crida, A., Bitsch, B., & Morbidelli, A., 2014, MNRAS, 440, 683CrossRefGoogle Scholar
Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D., & Gomes, R., 2011, AJ, 142, 152CrossRefGoogle Scholar
Levison, H. F., Morbidelli, A., Van Laerhoven, C., Gomes, R., & Tsiganis, K., 2008, Icarus, 196, 258CrossRefGoogle Scholar
Lin, D. N. C. & Papaloizou, J., 1986, ApJ, 309, 846CrossRefGoogle Scholar
Lis, D. C., et al., 2013, ApJ, 774, L3CrossRefGoogle Scholar
Machida, M. N., Kokubo, E., Inutsuka, S.-I., & Matsumoto, T., 2010, MNRAS, 405, 1227Google Scholar
Malhotra, R., 1995, AJ, 110, 420CrossRefGoogle Scholar
Mandell, A. M., Raymond, S. N., & Sigurdsson, S., 2007, ApJ, 660, 823CrossRefGoogle Scholar
Mandt, K. E., Mousis, O., Lunine, J., & Gautier, D., 2014, ApJ, 788, L24CrossRefGoogle Scholar
Marty, B. & Yokochi, R., 2006, Reviews in Mineralogy and Geochemistry, 62, 421CrossRefGoogle Scholar
Masset, F. & Snellgrove, M., 2001, MNRAS, 320, L55CrossRefGoogle Scholar
Masset, F. S. & Casoli, J., 2010, ApJ, 723, 1393CrossRefGoogle Scholar
Masset, F. S. & Papaloizou, J. C. B., 2003, ApJ, 588, 494CrossRefGoogle Scholar
Meech, K. J., et al., 2011, ApJ, 734, L1CrossRefGoogle Scholar
Meier, R., Owen, T. C., Matthews, H. E., Jewitt, D. C., Bockelee-Morvan, D., Biver, N., Crovisier, J., & Gautier, D., 1998, Science, 279, 842CrossRefGoogle Scholar
Morbidelli, A., Lunine, J. I., O'Brien, D. P., Raymond, S. N., & Walsh, K. J., 2012, AREPS, 40, 251Google Scholar
Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., & Cyr, K. E., 2000, M&PS, 35, 1309Google Scholar
Morbidelli, A., Szulágyi, J., Crida, A., Lega, E., Bitsch, B., Tanigawa, T., & Kanagawa, K., 2014, Icarus, 232, 266CrossRefGoogle Scholar
Morbidelli, A. & Crida, A., 2007, Icarus, 191, 158CrossRefGoogle Scholar
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R., 2007, AJ, 134, 1790CrossRefGoogle Scholar
Morishima, R., Schmidt, M. W., Stadel, J., & Moore, B., 2008, ApJ, 685, 1247CrossRefGoogle Scholar
Morishima, R., Stadel, J., & Moore, B., 2010, Icarus, 207, 517CrossRefGoogle Scholar
Nagasawa, M., Lin, D. N. C., & Thommes, E., 2005, ApJ, 635, 578CrossRefGoogle Scholar
Nesvorný, D. & Morbidelli, A., 2012, AJ, 144, 117CrossRefGoogle Scholar
Nesvorný, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlický, D., & Gounelle, M., 2010, ApJ, 713, 816CrossRefGoogle Scholar
Nixon, C. A., et al., 2012, ApJ, 749, 159CrossRefGoogle Scholar
O'Brien, D. P., Morbidelli, A., & Bottke, W. F., 2007, Icarus, 191, 434CrossRefGoogle Scholar
O'Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N., & Mandell, A. M., 2014, Icarus, 239, 74CrossRefGoogle Scholar
Paardekooper, S.-J., Baruteau, C., & Kley, W., 2011, MNRAS, 410, 293CrossRefGoogle Scholar
Petit, J.-M., Morbidelli, A., & Chambers, J., 2001, Icarus, 153, 338CrossRefGoogle Scholar
Pierens, A. & Nelson, R. P., 2008, A&A, 482, 333Google Scholar
Pierens, A. & Raymond, S. N., 2011, A&A, 533, A131Google Scholar
Pierens, A., Raymond, S. N., Nesvorny, D. & Morbidelli, A. 2014, arXiv, arXiv:1410.0543Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y., 1996, Icarus, 124, 62CrossRefGoogle Scholar
Raymond, S. N., 2006, ApJ, 643, L131CrossRefGoogle Scholar
Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R., & Walsh, K. J., 2013, arXiv, arXiv:1312.1689Google Scholar
Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A., 2009, Icarus, 203, 644CrossRefGoogle Scholar
Raymond, S. N., Quinn, T., & Lunine, J. I., 2007, Astrobiology, 7, 66CrossRefGoogle Scholar
Raymond, S. N., Quinn, T., & Lunine, J. I., 2006, Icarus, 183, 265CrossRefGoogle Scholar
Rivier, G., Crida, A., Morbidelli, A., & Brouet, Y., 2012, A&A, 548, A116Google Scholar
Rivkin, A. S. & Emery, J. P., 2010, Nature, 464, 1322CrossRefGoogle Scholar
Rowan-Robinson, M. & May, B., 2013, MNRAS, 429, 2894CrossRefGoogle Scholar
Szulágyi, J., Morbidelli, A., Crida, A., & Masset, F., 2014, ApJ, 782, 65CrossRefGoogle Scholar
Terquem, C. & Papaloizou, J. C. B., 2007, ApJ, 654, 1110CrossRefGoogle Scholar
Thommes, E., Nagasawa, M., & Lin, D. N. C., 2008, ApJ, 676, 728CrossRefGoogle Scholar
Uribe, A. L., Klahr, H., & Henning, T., 2013, ApJ, 769, 97CrossRefGoogle Scholar
Waite, J. H., Jr., et al., 2009, Nature, 460, 487CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P., & Mandell, A. M., 2012, M&PS, 47, 1941Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P., & Mandell, A. M., 2011, Nature, 475, 206CrossRefGoogle Scholar
Ward, W. R., 1981, Icarus, 47, 234CrossRefGoogle Scholar
Ward, W. R., 1997, Icarus, 126, 261CrossRefGoogle Scholar
Wetherill, G. W., 1991, LPI, 22, 1495Google Scholar