Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T17:54:49.496Z Has data issue: false hasContentIssue false

A Golden Decade for Stellar Populations?

Published online by Cambridge University Press:  13 April 2010

Roberto G. Abraham*
Affiliation:
Dept. of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

People working on stellar populations can look forward to an exciting decade ahead. Investigations of stellar populations lie at the heart of the science cases being used to justify the development of upcoming telescopes and emerging instrumentation technologies. Examples abound, but I will focus on three case studies: (1) Wide field astronomy with upcoming ground-based and space-based survey facilities; (2) Adaptive optics, which has the potential to revolutionize our understanding of stellar populations in both nearby and distant galaxies; (3) The James Webb Space Telescope, which may well extend the reach of stellar population work to encompass the full range of the star-forming history of the Universe. However, most of these developments will require extensive advance preparation in order to be used effectively. The time to start that preparation is now (if not yesterday). Three areas which need urgent development are highlighted in these proceedings: (1) We need a wide-field high-resolution spectroscopic capability to augment wide-area imaging surveys; (2) We need a set of AO-friendly extragalactic deep fields in order to exploit upcoming AO-fed instrumentation; and (3) Existing tools for population synthesis modeling need to be extended in order to incorporate the effects of dust. Because the physics of dust creation and destruction is so complicated and uncertain, the latter capability sounds almost impossibly hard to develop, but in this talk I will argue that some simple approaches already exist that allow dust to be injected rather naturally into population synthesis models. I will show a concrete example where incorporation of dust into spectral synthesis models allows one to detect and characterize rate of formation of circumstellar disks at high redshifts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Abraham, R. G., et al. 2004, AJ, 127, 2455 (Paper I)CrossRefGoogle Scholar
Baldry, I. K. & Glazebrook, K. 2003, ApJ, 593, 258CrossRefGoogle Scholar
Baldry, I. K., Glazebrook, K., & Driver, S. P. 2008, MNRAS (in press), arXiv:0804.2892Google Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 334, 1000CrossRefGoogle Scholar
Bundy, K., Treu, T., & Ellis, R. S. 2007, ApJ, 665, L5CrossRefGoogle Scholar
Charlot, S., Worthey, G., & Bressan, A. 1996, ApJ, 457, 625CrossRefGoogle Scholar
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595CrossRefGoogle Scholar
Damjanov, I. et al. 2009, in preparation.Google Scholar
Desert, F.-X., Boulanger, F., & Puget, J. L. 1990, A&A, 237, 215Google Scholar
Dickinson, M. et al. 2003, ApJ, 587, 25CrossRefGoogle Scholar
Dickinson, M., Giavalisco, M., & the Goods Team. In ‘The Mass of Galaxies at Low and High Redshift’, Edited by Bender, R. and Renzini, A.. Springer-Verlag, 2003, p. 324CrossRefGoogle Scholar
Drory, N., et al. 2001, MNRAS, 325, 550CrossRefGoogle Scholar
Fioc, M. & Rocca-Volmerange, B. 1997, A&A, 326, 950Google Scholar
Glazebrook, K., et al. 2004, Nature, 430, 181 (Paper III)CrossRefGoogle Scholar
González-García, A. C., & van Albada, T. S. 2003, MNRAS, 342, 36CrossRefGoogle Scholar
Gullieuszik, M., et al. 2008, A&A, 483, L5Google Scholar
Ibata, R., Chapman, S., Ferguson, A. M. N., Lewis, G., Irwin, M., & Tanvir, N. 2005, ApJ, 634, 287CrossRefGoogle Scholar
Kauffmann, G., et al. 2003, MNRAS, 341, 33CrossRefGoogle Scholar
Kaiser, N. 2004, SPIE, 5489, 11Google Scholar
Kalirai, J. S., et al. 2006, ApJ, 648, 389CrossRefGoogle Scholar
Keller, S. C., et al. 2007, Publications of the Astronomical Society of Australia, 24, 1CrossRefGoogle Scholar
Koch, A., et al. 2008, ApJ, 689, 958CrossRefGoogle Scholar
Le Borgne, D., Rocca-Volmerange, B., Prugniel, P., Lanon, A., Fioc, M., & Soubiran, C. 2004, A&A, 425, 881Google Scholar
Maraston, C., et al. 2006, ApJ, 652, 85CrossRefGoogle Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARAA, 47, 371CrossRefGoogle Scholar
Tolstoy, E., et al. 2004, ApJLett, 617, L119CrossRefGoogle Scholar
van Breugel, W., & Bland-Hawthorn, J. 2000, Proceedings from ASP Conference 195, ‘Imaging the Universe in Three Dimensions’.Google Scholar
Tyson, J. A. 2002, SPIE, 4836, 10Google Scholar
Walker, M. G., Mateo, M., & Olszewski, E. W. 2009, AJ, 137, 3100CrossRefGoogle Scholar
Walker, M. G., Mateo, M., Olszewski, E. W., Bernstein, R., Sen, B., & Woodroofe, M. 2007, ApJSupp, 171, 389CrossRefGoogle Scholar