Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T13:56:18.217Z Has data issue: false hasContentIssue false

Globular Clusters, Dwarf Galaxies, and the Assembly of the M87 Halo

Published online by Cambridge University Press:  09 May 2016

Eric W. Peng
Affiliation:
Department of Astronomy, Peking University, Beijing, China email: [email protected] Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Hong-Xin Zhang
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, 7820436 Macul, Santiago, Chile
Chengze Liu
Affiliation:
Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Yiqing Liu
Affiliation:
Department of Astronomy, Peking University, Beijing, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At the center of the nearest galaxy cluster, the Virgo cluster, lies the massive cD galaxy, M87 (NGC 4486). Using data from the Next Generation Virgo Cluster Survey, we investigate the relationship between M87, its globular clusters (GCs), and satellite dwarf galaxies. We find that the kinematics of GCs and ultra-compact dwarfs (UCDs) are different, indicating that UCDs are not simply massive GCs. We also identify a morphological sequence of envelope fraction around UCDs correlated with cluster-centric distance that suggest UCDs are the result of tidal stripping. Lastly, we find that the [α/Fe] abundance ratios of low-mass early-type galaxies in Virgo exhibit a strong negative gradient within ~ 400 kpc of M87, where the galaxies closest to M87 have the highest values. These satellite galaxies are likely the surviving counterparts of accreted dwarfs that contribute stars to the metal-poor, α-rich stellar halos of massive galaxies. Together, these results describe a dense environment that has had a strong and continuing impact on the evolution of its low-mass neighbors.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bekki, K., Couch, W. J., Drinkwater, M. J., & Shioya, Y. 2003, MNRAS, 344, 399CrossRefGoogle Scholar
Binggeli, B., Sandage, A., & Tammann, G. A. 1985, AJ, 90, 1681CrossRefGoogle Scholar
Côté, P., Piatek, S., Ferrarese, L., et al. 2006, ApJS, 165, 57Google Scholar
Ferrarese, L., Côté, P., Cuillandre, J.-C., et al. 2012, ApJS, 200, 4Google Scholar
Diemand, J., Madau, P., & Moore, B. 2005, MNRAS, 364, 367Google Scholar
Greene, J. E., Murphy, J. D., Comerford, J. M., Gebhardt, K., & Adams, J. J. 2012, ApJ, 750, 32Google Scholar
Greene, J. E., Murphy, J. D., Graves, G. J., Gunn, J. E., Raskutti, S., Comerford, J. M., & Gebhardt, K. 2013, ApJ, 776, 64CrossRefGoogle Scholar
Hanes, D. A., Côté, P., Bridges, T. J., et al. 2001, ApJ, 559, 812Google Scholar
Liu, C., Peng, E. W., Côté, P., et al. 2015, ApJ, 812, 34Google Scholar
Liu, Y., Peng, E. W., Blakeslee, J. P., et al. 2015, ApJ, submittedGoogle Scholar
McDermid, R. M., Alatalo, K., Blitz, L., et al. 2015, MNRAS, 448, 3484CrossRefGoogle Scholar
Mieske, S., Hilker, M., & Misgeld, I. 2012, A&A, 537, A3Google Scholar
Muñoz, R. P., Puzia, T. H., Lançon, A., et al. 2014, ApJS, 210, 4Google Scholar
Peng, E. W., Jordán, A., Côté, P., et al. 2008, ApJ, 681, 197Google Scholar
Strader, J., Romanowsky, A. J., Brodie, J. P., et al. 2011, ApJS, 197, 33CrossRefGoogle Scholar
Zhang, H.-X., Peng, E. W., Côté, P., et al. 2015, ApJ, 802, 30Google Scholar