Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T11:37:50.975Z Has data issue: false hasContentIssue false

Globular Cluster Streams as Galactic High-Precision Scales

Published online by Cambridge University Press:  09 May 2016

Andreas H.W. Küpper
Affiliation:
Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA email: [email protected]
Eduardo Balbinot
Affiliation:
Department of Physics, University of Surrey, Guildford GU2 7XH, UK
Ana Bonaca
Affiliation:
Department of Astronomy, Yale University, New Haven, CT 06511, USA
Kathryn V. Johnston
Affiliation:
Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA email: [email protected]
David W. Hogg
Affiliation:
Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA
Pavel Kroupa
Affiliation:
Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), University of Bonn, Nussallee 14-16, 53115 Bonn, Germany
Basilio X. Santiago
Affiliation:
Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brasil Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brasil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tidal streams of globular clusters are ideal tracers of the Galactic gravitational potential. Compared to the few known, complex and diffuse dwarf-galaxy streams, they are kinematically cold, have thin morphologies and are abundant in the halo of the Milky Way. Their coldness and thinness in combination with potential epicyclic substructure in the vicinity of the stream progenitor turns them into high-precision scales. With the example of Palomar 5, we demonstrate how modeling of a globular cluster stream allows us to simultaneously measure the properties of the disrupting globular cluster, its orbital motion, and the gravitational potential of the Milky Way.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aarseth, S. J. 2003, Gravitational N-Body Simulations (Cambridge University Press)Google Scholar
Bernard, E. J., Ferguson, A. M. N., Schlafly, E. F., et al. 2014, MNRAS, 443, L84Google Scholar
Bonaca, A., Geha, M., & Kallivayalil, N. 2012, ApJ (Letters), 760, L6Google Scholar
Bonaca, A., Geha, M., Küpper, A. H. W., Diemand, J., Johnston, K. V., & Hogg, D. W. 2014, ApJ, 795, 94Google Scholar
Dehnen, W., Odenkirchen, M., Grebel, E. K., & Rix, H.-W. 2004, AJ, 127, 2753Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306Google Scholar
Fritz, T. K. & Kallivayalil, N. 2015, ApJ, 811, 123Google Scholar
Grillmair, C. J., Cutri, R., Masci, F. J., Conrow, T., Sesar, B., Eisenhardt, P. R. M., & Wright, E. L. 2013, ApJ (Letters), 769, L23Google Scholar
Helmi, A. 2004, ApJ, 610, L97CrossRefGoogle Scholar
Johnston, K. V., Law, D. R., & Majewski, S. R. 2005, ApJ, 619, 800Google Scholar
Just, A., Berczik, P., Petrov, M. I., & Ernst, A. 2009, MNRAS, 392, 969Google Scholar
Koposov, S. E., Rix, H.-W., & Hogg, D. W. 2010, ApJ, 712, 260Google Scholar
Koposov, S. E., Irwin, M., Belokurov, V., et al. 2014, MNRAS, 442, L85Google Scholar
Küpper, A. H. W., MacLeod, A., & Heggie, D. C. 2008, MNRAS, 387, 1248Google Scholar
Küpper, A. H. W., Lane, R. R., & Heggie, D. C. 2012, MNRAS, 420, 2700Google Scholar
Küpper, A. H. W., Balbinot, E., Bonaca, A., Johnston, K. V., Hogg, D. W., Kroupa, P., & Santiago, B. X. 2015, ApJ, 803, 80Google Scholar
Kuzma, P. B., Da Costa, G. S., Keller, S. C., & Maunder, E. 2015, MNRAS, 446, 3297Google Scholar
Law, D. R. & Majewski, S. R. 2010, ApJ, 714, 229Google Scholar
Mastrobuono-Battisti, A., Di Matteo, P., Montuori, M., & Haywood, M. 2012, A&A, 546, L7Google Scholar
Odenkirchen, M., Grebel, E. K., Rockosi, C. M., et al. 2001, ApJ (Letters), 548, L165Google Scholar
Odenkirchen, M., Grebel, E. K., Kayser, A., Rix, H.-W., & Dehnen, W. 2009, AJ, 137, 3378Google Scholar
Pearson, S., Küpper, A. H. W., Johnston, K. V., & Price-Whelan, A. M. 2015, ApJ, 799, 28Google Scholar
Price-Whelan, A. M., Johnston, K. V., Valluri, M., Pearson, S., Küpper, A. H. W., & Hogg, D. W. 2016, MNRAS, 455, 1079Google Scholar
Zonoozi, A. H., Küpper, A. H. W., Baumgardt, H., Haghi, H., Kroupa, P., & Hilker, M. 2011, MNRAS, 411, 1989Google Scholar
Zonoozi, A. H., Haghi, H., Küpper, A. H. W., Baumgardt, H., Frank, M. J., & Kroupa, P. 2014, MNRAS, 440, 3172Google Scholar