Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:53:17.745Z Has data issue: false hasContentIssue false

Giant Impacts and Debris Disks

Published online by Cambridge University Press:  29 April 2014

H. Genda
Affiliation:
Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan email: [email protected]
H. Kobayashi
Affiliation:
Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
E. Kokubo
Affiliation:
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the last stage of terrestrial planet formation, Mars-sized protoplanets often collides with each other. Our high-resolution impact simulations show that such giant impacts produce a significant amount of fragments within the terrestrial planet region. These ejected fragments form a hot debris disk around the central star. We calculated the evolution of the surface density and size distribution of the debris disk using the analytical model of collision disruption, and estimated its infrared excess emission. We found that 24 μm flux from the debris disk is higher than stellar flux throughout the giant impact stage (~ 108 years), which can explain the infrared excess recently observed around the star with the age of 107 – 108 years.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Agnor, C. B., Canup, R. M., & Levison, H. F. 1999, Icarus, 37, 219Google Scholar
Beichman, C. A., Bryden, G., Stapelfeldt, K. R., et al. 2006, ApJ 652 16741693Google Scholar
Chambers, J. E. & Wetherill, G. W. 1998, Icarus, 136, 304CrossRefGoogle Scholar
Carpenter, J. M., Bouwman, J., Mamajek, E. E., et al. 2009, ApJS 181 197226Google Scholar
Chen, C. H., Mamajek, E. E., Bitner, M. A., Pecaut, M., Su, K. Y. L., & Weinberger, A. J. 2011, ApJ, 738, 122CrossRefGoogle Scholar
Genda, H., Kokubo, E., & Ida, S. 2012, ApJ, 744, 137Google Scholar
Goldreich, P. & Ward, W. R. 1973, ApJ, 183, 1051Google Scholar
Jackson, A. P. & Wyatt, M. C. 2012, MNRAS 425 657679CrossRefGoogle Scholar
Kobayashi, H. & Tanaka, H. 2010, Icarus 206 735746Google Scholar
Kokubo, E. & Genda, H. 2010, ApJL, 168, 433Google Scholar
Kokubo, E. & Ida, S. 1998, Icarus, 131, 171CrossRefGoogle Scholar
Melis, C., Zuckerman, B., Rhee, J. H., & Song, I. 2010, ApJL 717 L57L61CrossRefGoogle Scholar
Melis, C., Zuckerman, B., Rhee, J. H., et al. 2012, Nature 487 7476CrossRefGoogle Scholar
Weinberger, A. J., Becklin, E. E., Song, I., & Zuckerman, B. 2011, ApJ, 726, 72CrossRefGoogle Scholar
Wetherill, G. W. 1985, Science, 228, 877Google Scholar
Youdin, A. N. & Shu, F. H. 2002, ApJ, 580, 494CrossRefGoogle Scholar
Zuckerman, B., Rhee, J. H., Song, I., & Bessell, M. S. 2011, ApJ, 732, 61Google Scholar