Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T04:12:56.957Z Has data issue: false hasContentIssue false

GEP I: A globular cluster in the center of the dwarf spheroidal galaxy Andromeda XXV?

Published online by Cambridge University Press:  11 March 2020

Felice Cusano
Affiliation:
INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3 - 40129 Bologna – Italy email: [email protected]
Alessia Garofalo
Affiliation:
INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3 - 40129 Bologna – Italy email: [email protected]
Gisella Clementini
Affiliation:
INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3 - 40129 Bologna – Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Looking for variable stars in the M31 dwarf spheroidal satellite Andromeda XXV (And XXV), which we have observed with the LBC at the LBT, we serendipitously discovered a clustering of stars (Gep I) of 12 arcsec in diameter, near the center of And XXV. This is one of the very few clusters known to be associated with a dwarf spheroidal galaxy. The half light radius (rh) of Gep I at the distance of And XXV corresponds to 25 pc in linear extension. Radius and absolute V (MV∼ −4.9 mag) magnitude place Gep I in the region of the MV-rh plane that seems to be forbidden to ordinary globular clusters (GCs). The seeing-limited resolution of our photometry could resolve only a few bright stars in Gep I. The CMD of these sources is compatible with an old stellar population placed at a heliocentric distance of ∼750–800 kpc, thus confirming a real concentration of old stars. The ground-based CMD of Gep I is severely incomplete. Future high resolution imaging and spectroscopy of the brightest stars will permit to disentangle the puzzle on the real nature of Gep I.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Amorisco, N. C. 2013, ApJ, 884, 64Google Scholar
Bressan, A., Marigo, P., Girardi, L.et al. 2012, MNRAS, 427, 127CrossRefGoogle Scholar
Contenta, F., Gieles, M., Balbinot, E., et al. 2017, MNRAS, 466, 1741CrossRefGoogle Scholar
Crnojević, D., Sand, D. J., Zaritsky, D., et al. 2016, ApJ, 824L, 14CrossRefGoogle Scholar
Cusano, F., Clementini, G., Garofalo, A., et al. 2013, ApJ, 779, 7CrossRefGoogle Scholar
Cusano, F., Garofalo, A., Clementini, G., et al. 2016, ApJ, 829, 26CrossRefGoogle Scholar
Cusano, F., Garofalo, A., Clementini, G., et al. 2017, ApJ, 851, 9CrossRefGoogle Scholar
Galleti, S., Federici, L., Bellazzini, M., et al. 2004, A&A, 416, 917Google Scholar
Huxor, A. P., Ferguson, A. M. N., Tanvir, N. R., et al. 2011, MNRAS, 414, 770CrossRefGoogle Scholar
Richardson, J.C., Irwin, M. J., McConnachie, A. W., et al. 2011, ApJ, 732, 76CrossRefGoogle Scholar
Vanzella, E., Calura, F., Meneghetti, M., et al. 2019, MNRAS, 483, 3618CrossRefGoogle Scholar
Zaritsky, D., Crnojević, D., & Sand, D. J. 2016, ApJL, 826L, 9CrossRefGoogle Scholar