Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T17:11:57.786Z Has data issue: false hasContentIssue false

Generation and propagation of Alfvén waves in solar atmosphere

Published online by Cambridge University Press:  01 September 2008

Yuri T. Tsap
Affiliation:
Crimean Astrophysical Observatory, Nauchny, Crimea, Ukraine email: [email protected] Central Astronomical Observatory at Pulkovo, Russia email: [email protected]; [email protected]
Alexander V. Stepanov
Affiliation:
Central Astronomical Observatory at Pulkovo, Russia email: [email protected]; [email protected]
Yulia. G. Kopylova
Affiliation:
Central Astronomical Observatory at Pulkovo, Russia email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The propagation of Alfvén waves from the photosphere into the corona with regard to the fine structure of the magnetic field is considered. The energy flux of Alfvén–type waves generated in the photosphere by convective motions does not depend on the ionization ratio. The reflection coefficient continuously decreases with a decrease of wave period. Influence of the external magnetic field on the Spruit cutoff frequency for transverse (kink) modes excited in the thin magnetic flux tubes is analyzed. Torsional modes can penetrate into the upper atmosphere most effectively since their amplitudes does not increase with height in the photosphere while kink ones can be transformed into shock waves in the lower chromosphere because of a significant increase of amplitudes. In spite of stratification the linearity of Alfvén–type modes in the chromosphere is conserved due to violation of the WKB approximation. The important role of the magnetic canopy is discussed. Alfvén waves generated by convective motions in the photosphere can contribute significantly to the heating of the coronal plasma in quite regions of the Sun.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alfven, H. 1947, MNRAS, 107, 211.CrossRefGoogle Scholar
An, C.-H., Musielak, Z. E., Moore, R. L., & Suess, S. T. 1989, ApJ, 345, 597.CrossRefGoogle Scholar
An, C.-H., Suess, S. T., Moore, R. L., Musielak, Z. E. 1990, ApJ, 350, 309.CrossRefGoogle Scholar
Bel, N. & Leroy, B. 1981, Astron. Astrophys., 104, 203.Google Scholar
Cranmer, S. R. & van Ballegooijen, A. A. 2005, ApJS, 156, 265.CrossRefGoogle Scholar
Ferraro, V. C. A. & Plumpton, C. 1958, ApJ, 127, 459.CrossRefGoogle Scholar
Geronicolas, E. A. 1977, ApJ, 211, 966.CrossRefGoogle Scholar
Hollweg, J. V. 1982, ApJ, 254, 806.CrossRefGoogle Scholar
Kudoh, T. & Shibata, K. 1999, ApJ, 514, 493.CrossRefGoogle Scholar
Musielak, Z. E. & Moore, R. L. 1995, ApJ, 452, 434.CrossRefGoogle Scholar
Musielak, Z. E., Routh, S., & Hammer, R. 2007, ApJ, 659, 650.CrossRefGoogle Scholar
Narain, U. & Ulmshneider, P. 1996, Space Sci. Revs, 75, 453.CrossRefGoogle Scholar
Noble, M. W., Musielak, Z. E., & Ulmschneider, P. U. 2003, Astron. Astrophys., 409, 1085.CrossRefGoogle Scholar
Ofman, L. 2005, Space Sci. Revs, 120, 67.CrossRefGoogle Scholar
Schwartz, S. J., Cally, P. S., & Bel, N. 1984, Solar Phys., 92, 81.CrossRefGoogle Scholar
Spruit, H. C. 1981, Astron. Astrophys., 98, 155.Google Scholar
Thomas, J. H. 1978, ApJ, 225, 275.CrossRefGoogle Scholar
Tsap, Y. T. 2006, in Proccedings IAU Symposium No. 233, p.253.Google Scholar
Vranjes, J., Poedts, S., Pandey, B. P., & de Pontieu, B. 2008, Astron. Astrophys., 478, 553.CrossRefGoogle Scholar