Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T14:05:35.015Z Has data issue: false hasContentIssue false

Gas-dust chemistry of volatiles in the star and planetary system formation

Published online by Cambridge University Press:  12 October 2020

Yuri Aikawa
Affiliation:
Department of Astronomy, The University of Tokyo, 113-0033, Tokyo, Japan email: [email protected]
Kenji Furuya
Affiliation:
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The focus of this work is on two topics: (i) formation of complex organic molecules (COMs) and (ii) isotope fractionation. Various COMs, which are C, H-containing molecules consisting of 6 atoms and more, have been detected in the central warm region of protostellar cores. Most of this review is about gas-grain chemical models, which have been constructed to evaluate the mechanisms and efficiency of the COM formation. The relevant physical and chemical processes are investigated in laboratory experiments, as reported in other articles in this volume.

The isotope fractionation of volatile elements is observed in both the interstellar medium (ISM) and Solar system material. While exothermic exchange reactions enrich molecules with heavier isotopes such as Deuterium, the isotope selective photodissociation can be coupled with ice formation to enrich the ice mantle with rare isotopes. The efficiency of this fractionation depends on the photodesorption yields, which has been studied in laboratory experiments.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aikawa, Y. 2013, Chem. Rev., 113, 8961CrossRefGoogle Scholar
Bergner, J., Öberg, K. I., Rajappan, M., et al. 2019, ApJ, 874, 115 CrossRefGoogle Scholar
Bianchi, E., Codella, C., Ceccarelli, C., et al. 2019, MNRAS, 483, 1850 CrossRefGoogle Scholar
Bizzocchi, L., Caselli, P., Leonardo, E., et al. 2013, A&A, 555, 109 Google Scholar
Chuang, K.-J., Fedoseev, G., Ioppolo, S., et al. 2016, MNRAS, 455, 1702 CrossRefGoogle Scholar
Chuang, K.-J., Fedoseev, G., Qasim, D., et al. 2018, ApJ, 853, 102 CrossRefGoogle Scholar
Cuppen, H., Fredon, A., Lamberts, T., et al. 2018, IAU Symposium, 332, 293 Google Scholar
Daniel, F., Gélan, M., Roueff, E., et al. 2013, A&A, 560, 3 Google Scholar
Fayolle, E. C., Öberg, K. I., Cuppen, H., et al. 2011, A&A, 529, 74 Google Scholar
Furuya, K., Aikawa, Y., Sakai, N., et al. 2011, ApJ, 731, 38 CrossRefGoogle Scholar
Furuya, K., Drozdovskaya, M. N., Visser, R., et al. 2017, A&A, 599, 40 Google Scholar
Furuya, K. & Aikawa, Y. 2018, ApJ, 857, 105 CrossRefGoogle Scholar
Furuya, K., Watanabe, Y., Sakai, T., et al. 2018, A&A, 615, 16 Google Scholar
Garrod, R. T. 2013, ApJ, 765, 60 CrossRefGoogle Scholar
Ghesquiere, P., Mineva, T., Talbi, D., et al. 2015, PCCP, 17, 11455 CrossRefGoogle Scholar
Ghesquiere, P., Ivlev, A., Noble, A., et al. 2018, A&A, 614, 107 Google Scholar
Hasegawa, T. I. & Herbst, E. 1993, MNRAS, 263, 589 CrossRefGoogle Scholar
Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427 CrossRefGoogle Scholar
Hidaka, H., Watanabe, M. Kouchi, A., et al. 2009, ApJ, 702, 291 CrossRefGoogle Scholar
Hugo, E., Asvany, O., Schlemmer. S., 2009, J. Chem. Phys, 130, 164302 CrossRefGoogle Scholar
Inoue, T. & Inutsuka, S. 2012, ApJ, 759, 35 CrossRefGoogle Scholar
Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A. et al. 2016, A&A, 595, 117 Google Scholar
Martin-Domenech, R., Cruz-Diaz, G. A, Muñoz Caro, G. M., et al. 2018, MNRAS, 473, 2575 CrossRefGoogle Scholar
Marty, B., Chaussidon, M., Wiens, R. C., et al. 2011, Science, 332, 1533 CrossRefGoogle Scholar
McKeegan, K. D., Kallio, A. P., Heber, V. S., et al. 2011, Science, 332, 1528 CrossRefGoogle Scholar
Mumma, & Charnley, 2011, ARA&A, 49, 471 CrossRefGoogle Scholar
Lee, J.-E., Lee, S., Baek, G. et al. 2019, Nature Astron., 3, 314 CrossRefGoogle Scholar
Linnartz, H., Ioppolo, S., Fedoseev, G. 2015, Int. Rev. Phys. Chem. 34, 205 CrossRefGoogle Scholar
Lu, Y., Chang, Q., Aikawa, Y., et al. 2018, ApJ, 869, 165 CrossRefGoogle Scholar
Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnartz, H. 2009, A&A, 504, 891 Google Scholar
Öberg, K. I., Linnartz, H., Visser, R., et al. 2009, ApJ, 693, 1209 CrossRefGoogle Scholar
Oya, Y., Sakai, N., López-Sepulcre, A., et al. 2016, ApJ, 824, 88 CrossRefGoogle Scholar
Qasim, D., Chuang, K.-J., Fedoseev, G., et al. 2018, A&A, 612, A83 Google Scholar
Ritchey, A. M., Federman, S. R., Lambert, D. L., et al. 2015, ApJL, 804, L3 CrossRefGoogle Scholar
Roueff, E., Loison, J. C. Hickson, K. M., et al. 2015, A&A, 576, 99 Google Scholar
Ruaud, M., Wakelam, V., Hersant, F., et al. 2016, MNRAS, 459, 3756 CrossRefGoogle Scholar
Sakai, N. & Yamamoto, S. 2013, Chem. Rev., 113, 8981 CrossRefGoogle Scholar
Sakai, N., Sakai, T., Hirota, T., et al. 2014, Nature, 507, 78 CrossRefGoogle Scholar
Sakai, N., Oya, Y., Higuchi, A., et al. 2017, MNRAS, 467, 76 Google Scholar
Shingledecker, C. N., Tennis, J., Le Gal, R., et al. 2018, ApJ, 861, 20 CrossRefGoogle Scholar
Shingledecker, C. N., Vasyunin, A., Herbst, E., et al. 2019, ApJ, 876, 140 CrossRefGoogle Scholar
Taquet, V., Ceccarelli, C., Kahane, C., et al. 2012, A&A, 538, A42 Google Scholar
Taquet, V., Wirstrom, E. S., Charnley, S. B., et al. 2017, A&A, 607, A20 Google Scholar
Wirstrom, & Charnley, 2018, MNRAS, 474, 3720 CrossRefGoogle Scholar
Yen, H.-W., Koch, P., Takakuwa, S., et al. 2017, ApJ, 834, 178 CrossRefGoogle Scholar