Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T21:21:59.606Z Has data issue: false hasContentIssue false

Galaxy Zoo: Outreach and Science Hand in Hand

Published online by Cambridge University Press:  05 March 2015

Karen L. Masters
Affiliation:
Institute for Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK email: [email protected] South East Physics Network, www.sepnet.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galaxy Zoo (www.galaxyzoo.org) is familiar to many as a hugely successful public engagement project. Hundreds of thousands of members of the public have contributed to Galaxy Zoo which collects visual classifications of galaxies in Sloan Digital Sky Survey and Hubble Space Telescope images. Galaxy Zoo has inspired a suite of similar Citizen Science projects known as “The Zooniverse“ (www.zooniverse.org) which now has well over half a million participants. Galaxy Zoo has also shown itself, in a series of peer reviewed papers, to be a fantastic database for the study of galaxy evolution. In this invited talk I described how that public engagement via citizen science is not only an effective means of outreach from data intensive surveys, but if done right can and must also increase the scientific output of the survey.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bamford, S. P., et al. 2009, MNRAS, 393, 1324CrossRefGoogle Scholar
Banerji, M., Lahav, O., Lintott, C. J., et al. 2010, MNRAS, 406, 342CrossRefGoogle Scholar
Christian, C., Lintott, C., Smith, A., Fortson, L., & Bamford, S. 2012, Organizations, People and Strategies in Astronomy Vol. 1, Edited by Andre Heck, Venngeist, Duttlenheim (2012) pp. 183–197, 183 (arXiv:1202.2577)Google Scholar
Fortson, L., Masters, K., Nichol, R., et al. 2012, Advances in Machine Learning and Data Mining for Astronomy, CRC Press, Eds.: Way, Michael J.et al., p. 213–236, 213 (arXiv:1104.5513)Google Scholar
Hoyle, B., Masters, K. L., Nichol, R. C., et al. 2011, MNRAS, 415, 3627Google Scholar
Land, K., Slosar, A., Lintott, C. J., et al. 2008, MNRAS, 388, 1686CrossRefGoogle Scholar
Lintott, C. J., et al. 2008, MNRAS, 389, 1179CrossRefGoogle Scholar
Lintott, C. J., Schawinski, K., Keel, W., et al. 2009, MNRAS 399, 129CrossRefGoogle Scholar
Lintott, C. J., et al. 2011, MNRAS, 410, 166Google Scholar
Masters, K. L., et al. 2010a, MNRAS 404, 792.CrossRefGoogle Scholar
Masters, K. L., et al. 2010b, MNRAS 405, 783.Google Scholar
Masters, K. L., et al. 2011, MNRAS, 411, 2026Google Scholar
Masters, K. L., Nichol, R. C., Haynes, M. P., et al. 2012, MNRAS, 424, 2180Google Scholar
Masters, K. L. 2012, Highlights of Astronomy, Volume 16, Ed Thierry Montmerle.Google Scholar
Raddick, M. J., Bracey, G., Gay, P. L., et al. 2010, Astronomy Education Review, 9, 010103CrossRefGoogle Scholar
Skibba, R. A., et al. 2009, MNRAS, 399, 966CrossRefGoogle Scholar
Skibba, R. A., Masters, K. L., Nichol, R. C., et al. 2012, MNRAS, 423, 1485CrossRefGoogle Scholar
Schawinski, K., Evans, D. A., Virani, S., et al. 2010a, ApJL, 724, L30Google Scholar
Schawinski, K., Urry, C. M., Virani, S., et al. 2010b, ApJ, 711, 284Google Scholar
Simmons, B. D., Lintott, C., Schawinski, K., et al. 2012, MNRAS (submitted; arXiv:1207.4190)Google Scholar
Strauss, M. A., et al. 2002, AJ, 124, 1810Google Scholar
Teng, S. H., Schawinski, K., Urry, C. M., et al. 2012, ApJ, 753, 165Google Scholar