Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T15:43:01.041Z Has data issue: false hasContentIssue false

Galaxy and Mass Assembly (GAMA): Selection of the Most Massive Clusters

Published online by Cambridge University Press:  12 October 2016

Héctor J. Ibarra-Medel
Affiliation:
National Institute of Astrophysics, Optics and Electronic, Luis Enrique Erro No 1, Tonantzintla, Puebla, México email: [email protected] email: [email protected]
Maritza Lara-López
Affiliation:
Institute of Astronomy, National Autonomous University of México, Box 70-264, M{éxico} City, México email: [email protected]
Omar López-Cruz
Affiliation:
National Institute of Astrophysics, Optics and Electronic, Luis Enrique Erro No 1, Tonantzintla, Puebla, México email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have developed a galaxy cluster finding technique based on the Delaunay Tessellation Field Estimator (DTFE) combined with caustic analysis. Our method allows us to recover clusters of galaxies within the mass range of $10^{12}$ to $10^{16}\ \mathcal{M}_{\odot}$. We have found a total of 113 galaxy clusters in the Galaxy and Mass Assembly survey (GAMA). In the corresponding mass range, the density of clusters found in this work is comparable to the density traced by clusters selected by the thermal Sunyaev Zel'dovich Effect; however, we are able to cover a wider mass range. We present the analysis of the two-point correlation function for our cluster sample.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alpaslan, M., Robotham, A. S. G., Driver, S., et al. 2012, MNRAS, 3012Google Scholar
Bahcall, N. A., Dong, F., Hao, L., et al. 2003, ApJ, 599, 814 CrossRefGoogle Scholar
Driver, S. P., Hill, D. T., et al. 2011, MNRAS, 413, 971 CrossRefGoogle Scholar
Estrada, J., Sefusatti, E., & Frieman, J. A. 2009, ApJ, 692, 265 CrossRefGoogle Scholar
Robotham, A. S. G., Norberg, P., Driver, S. P., et al. 2011, MNRAS, 416, 2640 CrossRefGoogle Scholar
Menanteau, F., et al. 2013, ApJ, 765, 67 CrossRefGoogle Scholar
Platen, E. 2009, Ph.D. ThesisGoogle Scholar
Schaap, W. E. & van de Weygaert, R. 2000, A&A, 363, L29 Google Scholar
Serra, A. L., Diaferio, A., Murante, G., & Borgani, S. 2011, MNRAS, 412, 800 Google Scholar
Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2004, ApJ, 610, 745 CrossRefGoogle Scholar
Lin, Y.-T. & Mohr, J. J. 2004, ApJ, 617, 879 CrossRefGoogle Scholar
Younger, J. D., Bahcall, N. A., & Bode, P. 2005, ApJ, 622, 1 CrossRefGoogle Scholar