Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:22:46.039Z Has data issue: false hasContentIssue false

Future Observations of Transits and Light Curves from Space

Published online by Cambridge University Press:  01 May 2008

Charles A. Beichman
Affiliation:
Michelson Science Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 email: [email protected]
Tom Greene
Affiliation:
Ames Research Center
John Krist
Affiliation:
Jet Propulsion Laboratory
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A variety of new observational opportunities have made transit and more generally light curve analysis central to the study of exoplanets. Talks at this IAU 253 Symposium have dramatically highlighted the measurement of the radius, density, atmospheric composition and atmospheric thermal structure, presently for relatively large, hot planets, but soon for smaller planets orbiting further from their host stars. On-going and future space observations will play a key role in the detection and characterization of these planetary systems. After a brief review, I focus on two topics: the need for a sensitive all-sky survey for planets transiting the brightest, closest stars and the follow-up opportunities afforded by the James Webb Space Telescope (JWST).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Beichman, C. A., et al. , in Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K. (eds.), University of Arizona Press, Tucson, p. 915.Google Scholar
Beichman, C. A., et al. 2008, in Proceedings of IAU 248, in press.Google Scholar
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A. 2001, ApJ, 552, 699.CrossRefGoogle Scholar
Burrows, A., Budaj, J., & Hubeny, I. 2008, ApJ, 678, 1436.CrossRefGoogle Scholar
Clampin, M. 2008, Advances in Space Research, 41, 1991.CrossRefGoogle Scholar
Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland, R. L. 2002, ApJ, 568, 377.CrossRefGoogle Scholar
Ehrenreich, D., et al. 2008, A & A, 483, 933.CrossRefGoogle Scholar
Fortney, J. J., Saumon, D., Marley, M. S., Lodders, K., & Freedman, R. S. 2006, ApJ, 642, 495.CrossRefGoogle Scholar
Green, D., Matthews, J., Seager, S., & Kuschnig, R. 2003, ApJ, 597, 590.CrossRefGoogle Scholar
Greene, T. 2007, in Proceedings of SPIE, Techniques and Instrumentation for Detection of Exoplanets III, Coulter, Daniel R., Editor, Vol. 6693, in press.Google Scholar
Krist, J. 2007, in In the Spirit of Bernard Lyot, UC Berkeley. Ed. Kalas, P..Google Scholar
Rieke, M., et al. 2003, in IR Space Telescopes and Instruments. Ed. Mather, J. C., Proc. SPIE, 4850, 478.Google Scholar
Roxburgh, I. & Catala, C., Plato Consortium 2007, Communications in Astroseismology 150, 357.CrossRefGoogle Scholar
Swain, M. R., Bouwman, J., Akeson, R. L., Lawler, S., & Beichman, C. A., ApJ, 674, 482.CrossRefGoogle Scholar
Swain, M. R., Vasisht, G., & Tinetti, G. 2008, Nature, 452, 329.CrossRefGoogle Scholar
Valenti, J., et al. 2005, BAAS, #115. 05, 37, 1350.Google Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2003, Nature, 422, 143.CrossRefGoogle Scholar
Wright, G. S., et al. 2004, Proc. SPIE, 5487, 653.CrossRefGoogle Scholar