Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T09:07:07.556Z Has data issue: false hasContentIssue false

Fundamental stellar properties from asteroseismology

Published online by Cambridge University Press:  06 January 2014

Víctor Silva Aguirre
Affiliation:
Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark email: [email protected]
Luca Casagrande
Affiliation:
Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611, Australia email: [email protected]
Andrea Miglio
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accurate characterization of stellar populations is of prime importance to correctly understand the formation and evolution process of our Galaxy. The field of asteroseismology has been particularly successful in such an endeavor providing fundamental parameters for large samples of stars in different evolutionary phases. We present our results on determinations of masses, radii, and distances of stars in the CoRoT and Kepler fields, showing that we can map and date different regions of the galactic disk and distinguish gradients in the distribution of stellar properties at different heights. We further review how asteroseismic determinations can produce a unique set of constraints, including ages, outside the solar neighborhood for galactic chemical evolution models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Baglin, A., Auvergne, M., Barge, P., et al. 2006, in The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding, ed. Fridlund, M., Baglin, A., Lochard, J., & Conroy, L. (ESA SP 1306), 33Google Scholar
Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 608Google Scholar
Blackwell, D. E., & Shallis, M. J. 1977, MNRAS, 180, 177Google Scholar
Brown, T. M., Gilliland, R. L., Noyes, R. W., & Ramsey, L. W. 1991, ApJ, 368, 599Google Scholar
Casagrande, L., Portinari, , Flynn, C. 2006, MNRAS, 373, 13Google Scholar
Casagrande, L., Ramírez, I., Meléndez, J., et al. 2010, A&A, 512, 54Google Scholar
Chaplin, W. J., Kjeldsen, H., Christensen-Dalsgaard, J., et al. 2011, Science, 332, 213Google Scholar
Chaplin, W. J., & Miglio, A. 2013, to appear in the 2013 volume of Annual Reviews of Astronomy and Astrophysics, arXiv:1303.1957v4Google Scholar
de Ridder, J., Barban, C., Baudin, F., et al. 2009, Nature, 469, 398Google Scholar
Gai, N., Basu, S., Chaplin, W. J., & Elsworth, Y. 2011, ApJ, 730, 63Google Scholar
Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010, PASP, 122, 131Google Scholar
Huber, D., Bedding, T. R., Stello, D., et al. 2011, ApJ, 743, 143Google Scholar
Huber, D., Ireland, M. J., Bedding, T. R., et al. 2012, ApJ, 760, 32Google Scholar
Kallinger, T., Mosser, B., Hekker, S.et al. 2010, A&A, 522, A1Google Scholar
Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87Google Scholar
Miglio, A., Montalbán, J., Baudin, F., et al. 2009, A&A, 503, L21Google Scholar
Miglio, A., Chiappini, C., Morel, T., et al. 2013a, MNRAS, 429, 423Google Scholar
Miglio, A., Chiappini, C., Morel, T., et al. 2013b, EPJ Web of Conferences, 43, 03004Google Scholar
Roxburgh, I., & Vorontsov, S. 2003, A&A, 411, 215Google Scholar
Silva Aguirre, V., Chaplin, W. J., Ballot, J., et al. 2011a, ApJ, 740, L2Google Scholar
Silva Aguirre, V., Ballot, J., Serenelli, A. M., & Weiss, A. 2011b, A&A, 529, A63Google Scholar
Silva Aguirre, V., Casagrande, L., Basu, S., et al. 2012, ApJ, 757, 99Google Scholar
Silva Aguirre, V., Basu, S., Brandão, I. M, et al. 2013, ApJ, 769, 141Google Scholar
Ulrich, R. K. 1986, ApJ, 306, L37Google Scholar