Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T22:38:12.450Z Has data issue: false hasContentIssue false

The Fundamental Physics of Angular Momentum Evolution in a ΛCDM Scenario

Published online by Cambridge University Press:  03 March 2020

Susana Pedrosa*
Affiliation:
Institute for Astronomy and Space Science, CONICET - UBA, Ciudad Universitaria, Buenos Aires, Argentina email: [email protected] Dept. de Fsica Teórica, Univ. Autónoma de Madrid Cantoblanco, Madrid, Espana
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galaxy formation is a very complex process in which many different physical mechanisms intervene. Within the LCDM paradigm processes such as gas inflows and outflows, mergers and interactions contribute to the redistribution of the angular momentum content of the structures. Recent observational results have brought new insights and also triggered several theoretical studies. Some of these new contributions will be analysed here.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Crain, R. et al. 2015, MNRAS, 450, 1937 CrossRefGoogle Scholar
Dominguez Tenreiro, R. et al. 2015, ApJL, 800, 30 Google Scholar
Fall, S. M. in IAU Symp. 100, Internal Kinematics and Dynamics of Galaxies, ed. Athanassoula, E. 1983, IAU, 391,CrossRefGoogle Scholar
Fall, S. M., & Efstathiou, G. 1980, MNRAS, 193, 189 Google Scholar
Fall, S. M., & Romanowsky, A. J. 2013, ApJL, 769, L26 CrossRefGoogle Scholar
Genel, S., Vogelsberger, M., Springel, V., et al. 2014, MNRAS, 445, 175 CrossRefGoogle Scholar
Genel, S., Fall, S. M., Hernquist, L., et al. 2015, ApJL, 804, L40 CrossRefGoogle Scholar
Lagos, C. del P., Stevens, A. R. H., Bower, R. G., et al. 2018, MNRAS, 473, 4956 CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782 CrossRefGoogle Scholar
Mo, H. J., Mao, S., & White, S. D. M. 1998, MNRAS, 295, 319 CrossRefGoogle Scholar
Obreja, A., Dutton, A. A., Maccio, A. V., et al. submitted arXiv:1804.06635 2018, MNRAS,Google Scholar
Obreschkow, D., & Glazebrook, K. 2014, ApJ, 784, 26 CrossRefGoogle Scholar
Romanowsky, A. J., & Fall, S. M. 2012, ApJS, 203, 17 CrossRefGoogle Scholar
Schaye, J., et al. 2015, MNRAS, 446, 521 CrossRefGoogle Scholar
Teklu, A. F., Remus, R.S., Dolag, K., et al. 2015, ApJ, 812, 29 Google Scholar
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, Nature, 509, 177 CrossRefGoogle Scholar
Wang, L., Dutton, A. A., Stinson, G. S., Maccio, A. V., et al. 2015, MNRAS, 454, 83 CrossRefGoogle Scholar
Zavala, J., Frenk, C. S., Bower, R., et al. 2016, MNRAS, 460, 4466 CrossRefGoogle Scholar