Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T22:29:15.184Z Has data issue: false hasContentIssue false

Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array

Published online by Cambridge University Press:  08 May 2018

Michael W. Eastwood
Affiliation:
Department of Astronomy, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA email: [email protected]
Gregg Hallinan
Affiliation:
Department of Astronomy, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 ≳ z ≳ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ∼15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K., & Witzel, A., 1977, A&A, 61, 99Google Scholar
Barry, N., Hazelton, B., Sullivan, I., Morales, M. F., & Pober, J. C., 2016, MNRAS, 461, 3135Google Scholar
Dowell, J., Taylor, G. B., Schinzel, F. K., Kassim, N. E., & Stovall, K., 2017, MNRAS, 469, 4537CrossRefGoogle Scholar
Eastwood, M. W., Anderson, M. M., Monroe, R. M., et al. 2017, ArXiv e-prints, arXiv:1711.00466Google Scholar
Ewall-Wice, A., Dillon, J. S., Liu, A., & Hewitt, J., 2017, MNRAS, 470, 1849CrossRefGoogle Scholar
Fialkov, A., Barkana, R., Pinhas, A., & Visbal, E., 2014, MNRAS, 437, L36Google Scholar
Guzmán, A. E., May, J., Alvarez, H., & Maeda, K., 2011, A&A, 525, A138Google Scholar
Mozdzen, T. J., Bowman, J. D., Monsalve, R. A., & Rogers, A. E. E., 2017, MNRAS, 464, 4995Google Scholar
Perley, R. A., & Butler, B. J., 2017, ApJS, 230, 7Google Scholar
Pritchard, J. R., & Loeb, A., 2012, Reports on Progress in Physics, 75, 086901Google Scholar
Scaife, A. M. M., & Heald, G. H., 2012, MNRAS, 423, L30Google Scholar
Shaw, J. R., Sigurdson, K., Pen, U.-L., Stebbins, A., & Sitwell, M., 2014, ApJ, 781, 57Google Scholar
Shaw, J. R., Sigurdson, K., Sitwell, M., Stebbins, A., & Pen, U.-L., 2015, Phys. Rev. D, 91, 083514CrossRefGoogle Scholar