Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:26:24.714Z Has data issue: false hasContentIssue false

From Gas to Stars over Cosmic Time

Published online by Cambridge University Press:  21 March 2013

Mordecai-Mark Mac Low*
Affiliation:
Department of Astrophysics, American Museum of Natural History 79th Street at Central Park West, New York, NY, 10024-5192, USA email: [email protected] Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation of stars from gas drives the evolution of galaxies. Yet, it remains one of the hardest processes to understand when trying to connect observations of modern and high-redshift stellar and galaxy populations to models of large scale structure formation. It has become clear that the star formation rate at redshifts z > 2 drops off rather more quickly than was thought even five years ago. Theoretical models have tended to overpredict the star formation rate at these high redshifts substantially, primarily due to overcooling. Overcooling in galaxies typically occurs because of unphysical radiative cooling. As a result, insufficient turbulence is driven by stellar feedback in galaxies. I show that such turbulence has the net effect of strongly inhibiting star formation, despite its ability to locally promote star formation by compression. Radiation pressure appears less likely to be a dominant driver of the turbulence than has been argued, but supernova and magnetorotational instabilities remain viable mechanisms. Gravity alone cannot be the main driver, as otherwise well-resolved models without feedback would accurately predict star formation rates. Star formation rate surface density correlates well with observed molecular gas surface density, as well as with other tracers of high density material. Correlation does not, however, necessarily imply causation. In this case, it appears that both molecule formation and star formation occur as a consequence of gravitational collapse, with molecules typically playing an important but not an essential role in cooling. The basic concept that gravitational instability drives star formation remains a true guide through the thickets of complexity surrounding this topic. I finally briefly note that understanding ionization heating and radiation pressure from the most massive stars will likely require much higher resolution models (sub-parsec scale) than resolving supernova feedback.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Agertz, O., Teyssier, R., & Moore, B. 2009, MNRAS, 397, L64Google Scholar
Andrews, B. H. & Thompson, T. A. 2011, ApJ, 727, 97Google Scholar
Bauer, A. & Springel, V. 2012, MNRAS, 423, 2558CrossRefGoogle Scholar
Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2012, ArXiv:1207.6105Google Scholar
Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846Google Scholar
Bigiel, F., Leroy, A. K., Walter, F., et al. 2011, ApJL, 730, L13Google Scholar
Boissier, S., Gil de Paz, A., Boselli, A., et al. 2007, ApJS, 173, 524CrossRefGoogle Scholar
Bournaud, F., Elmegreen, B. G., Teyssier, R., Block, D. L., & Puerari, I. 2010, MNRAS, 409, 1088Google Scholar
Chandrasekhar, S. 1951, Roy. Soc. London Proc. Ser. A, 210, 26Google Scholar
Christensen, C., Quinn, T., Governato, F., et al. 2012, ArXiv:1205.5567Google Scholar
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168CrossRefGoogle Scholar
Dale, J. E., Clark, P. C., & Bonnell, I. A. 2007, MNRAS, 377, 535CrossRefGoogle Scholar
de Avillez, M. A. 2000, MNRAS, 315, 479CrossRefGoogle Scholar
Dobbs, C. L., Burkert, A., & Pringle, J. E. 2011, MNRAS, 417, 1318CrossRefGoogle Scholar
Elmegreen, B. G. 2011, ApJ, 737, 10Google Scholar
Elmegreen, B. G. & Lada, C. J. 1977, ApJ, 214, 725CrossRefGoogle Scholar
Elmegreen, B. G. & Parravano, A. 1994, ApJL, 435, L121CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Marcus, M. T., et al. 2009, ApJ, 701, 306CrossRefGoogle Scholar
Fall, S. M., Krumholz, M. R., & Matzner, C. D. 2010, ApJL, 710, L142CrossRefGoogle Scholar
Fragile, P. C., Murray, S. D., & Lin, D. N. C. 2004, ApJ, 617, 1077CrossRefGoogle Scholar
Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273Google Scholar
Gammie, C. F. 1992, PhD thesis, Princeton Univ., NJ.Google Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 606, 271CrossRefGoogle Scholar
Getman, K. V., Feigelson, E. D., Sicilia-Aguilar, A., et al. 2012, ArXiv e-printsGoogle Scholar
Glover, S. C. O. & Clark, P. C. 2012a, MNRAS, 421, 9Google Scholar
Glover, S. C. O. & Clark, P. C. 2012b, ArXiv:1208.1471Google Scholar
Glover, S. C. O. & Mac Low, M.-M. 2007, ApJ, 659, 1317Google Scholar
Glover, S. C. O. & Mac Low, M.-M. 2011, MNRAS, 412, 337Google Scholar
Gnedin, N. Y. & Kravtsov, A. V. 2010, ApJ, 714, 287Google Scholar
Goldbaum, N. J., Krumholz, M. R., Matzner, C. D., & McKee, C. F. 2011, ApJ, 738, 101Google Scholar
Goldreich, P. & Lynden-Bell, D. 1965, MNRAS, 130, 97CrossRefGoogle Scholar
Heiderman, A., Evans, N. J. II, Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019Google Scholar
Hill, A. S., Joung, M. R., Mac Low, M.-M., et al. 2012, ApJ, 750, 104Google Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142Google Scholar
Hopkins, P. F., Quataert, E., & Murray, N. 2011, MNRAS, 417, 950CrossRefGoogle Scholar
Hummels, C. B. & Bryan, G. L. 2012, ApJ, 749, 140CrossRefGoogle Scholar
Joung, M. K. R. & Mac Low, M.-M. 2006, ApJ, 653, 1266Google Scholar
Joung, M. R., Mac Low, M.-M., & Bryan, G. L. 2009, ApJ, 704, 137CrossRefGoogle Scholar
Karim, A., Schinnerer, E., Martínez-Sansigre, A., et al. 2011, ApJ, 730, 61CrossRefGoogle Scholar
Katz, N., Weinberg, D. H., & Hernquist, L. 1996, ApJS, 105, 19Google Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541Google Scholar
Kennicutt, R. C. Jr., Armus, L., Bendo, G., et al. 2003, PASP, 115, 928Google Scholar
Kereš, D., Katz, N., Davé, R., Fardal, M., & Weinberg, D. H. 2009, MNRAS, 396, 2332Google Scholar
Kim, C.-G., Kim, W.-T., & Ostriker, E. C. 2011, ApJ, 743, 25CrossRefGoogle Scholar
Klessen, R. S., Heitsch, F., & Mac Low, M.-M. 2000, ApJ, 535, 887Google Scholar
Klessen, R. S. & Hennebelle, P. 2010, A&A, 520, A17Google Scholar
Krumholz, M. R. 2012, ArXiv:1208.1504Google Scholar
Krumholz, M. R. & Dekel, A. 2012, ApJ, 753, 16CrossRefGoogle Scholar
Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., & Cunningham, A. J. 2009a, Science, 323, 754Google Scholar
Krumholz, M. R., Leroy, A. K., & McKee, C. F. 2011, ApJ, 731, 25Google Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009b, ApJ, 699, 850CrossRefGoogle Scholar
Krumholz, M. R. & Thompson, T. A. 2012, ArXiv:1203.2926Google Scholar
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687Google Scholar
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782Google Scholar
Li, Y., Mac Low, M.-M., & Klessen, R. S. 2005, ApJ, 626, 823Google Scholar
Li, Y., Mac Low, M.-M., & Klessen, R. S. 2006, ApJ, 639, 879Google Scholar
Mac Low, M.-M. 1999, ApJ, 524, 169Google Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Rev. Mod. Phys., 76, 125CrossRefGoogle Scholar
Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, Phys. Rev. Lett., 80, 2754Google Scholar
Moster, B. P., Naab, T., & White, S. D. M. 2012, ArXiv:1205.5807Google Scholar
Murray, N., Quataert, E., & Thompson, T. A. 2010, ApJ, 709, 191Google Scholar
Narayanan, D., Krumholz, M., Ostriker, E. C., & Hernquist, L. 2011, MNRAS, 418, 664Google Scholar
Narayanan, D., Krumholz, M. R., Ostriker, E. C., & Hernquist, L. 2012, MNRAS, 421, 3127CrossRefGoogle Scholar
Ostriker, E. C., McKee, C. F., & Leroy, A. K. 2010, ApJ, 721, 975Google Scholar
Ostriker, E. C. & Shetty, R. 2011, ApJ, 731, 41Google Scholar
Peters, T., Banerjee, R., Klessen, R. S., et al. 2010, ApJ, 711, 1017Google Scholar
Petric, A. O. & Rupen, M. P. 2007, AJ, 134, 1952Google Scholar
Piontek, R. A. & Ostriker, E. C. 2004, ApJ, 601, 905Google Scholar
Piontek, R. A. & Ostriker, E. C. 2005, ApJ, 629, 849CrossRefGoogle Scholar
Piontek, R. A. & Ostriker, E. C. 2007, ApJ, 663, 183Google Scholar
Rafikov, R. R. 2001, MNRAS, 323, 445Google Scholar
Reddy, N. A. & Steidel, C. C. 2009, ApJ, 692, 778Google Scholar
Robertson, B. E. & Kravtsov, A. V. 2008, ApJ, 680, 1083Google Scholar
Romeo, A. B. & Wiegert, J. 2011, MNRAS, 416, 1191Google Scholar
Rownd, B. K. & Young, J. S. 1999, AJ, 118, 670Google Scholar
Safronov, V. S. 1960, Annales Astrophys., 23, 979Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161Google Scholar
Schaye, J. 2004, ApJ, 609, 667Google Scholar
Schruba, A., Leroy, A. K., Walter, F., et al. 2011, AJ, 142, 37Google Scholar
Sellwood, J. A. & Balbus, S. A. 1999, ApJ, 511, 660Google Scholar
Shetty, R., Glover, S. C., Dullemond, C. P., & Klessen, R. S. 2011a, MNRAS, 412, 1686Google Scholar
Shetty, R., Glover, S. C., Dullemond, C. P., et al. 2011b, MNRAS, 415, 3253Google Scholar
Somerville, R. S. & Primack, J. R. 1999, MNRAS, 310, 1087CrossRefGoogle Scholar
Springel, V. & Hernquist, L. 2003, MNRAS, 339, 312CrossRefGoogle Scholar
Stone, J. M., Ostriker, E. C., & Gammie, C. F. 1998, ApJL, 508, L99CrossRefGoogle Scholar
Sutherland, R. S. & Dopita, M. A. 1993, ApJS, 88, 253Google Scholar
Tamburro, D., Rix, H.-W., Leroy, A. K., et al. 2009, AJ, 137, 4424Google Scholar
Tasker, E. J. 2011, ApJ, 730, 11Google Scholar
Thompson, T. A., Quataert, E., & Murray, N. 2005, ApJ, 630, 167CrossRefGoogle Scholar
Tomisaka, K. & Ikeuchi, S. 1986, PASJ, 38, 697Google Scholar
Toomre, A. 1964, ApJ, 139, 1217CrossRefGoogle Scholar
Vacca, W. D., Garmany, C. D., & Shull, J. M. 1996, ApJ, 460, 914Google Scholar
Vázquez-Semadeni, E., Colín, P., Gómez, G. C., Ballesteros-Paredes, J., & Watson, A. W. 2010, ApJ, 715, 1302Google Scholar
von Weizsäcker, C. F. 1951, ApJ, 114, 165Google Scholar
Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, AJ, 136, 2563Google Scholar
Wang, B. & Silk, J. 1994, ApJ, 427, 759Google Scholar
White, S. D. M. & Frenk, C. S. 1991, ApJ, 379, 52Google Scholar
Wong, T. & Blitz, L. 2002, ApJ, 569, 157CrossRefGoogle Scholar
Yamaguchi, R., Mizuno, N., Onishi, T., Mizuno, A., & Fukui, Y. 2001, PASJ, 53, 959CrossRefGoogle Scholar