Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:07:13.322Z Has data issue: false hasContentIssue false

From data to science: Planck data and the CMB non-Gaussianity

Published online by Cambridge University Press:  01 July 2015

Anna Mangilli
Affiliation:
Institut d'Astrophysique de Paris, CNRS and UPMC Sorbonne Universites Paris VI, Bd. Arago, 75014, Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Studying the non-Gaussianity (NG) of the Cosmic Microwave Background (CMB) is an extremely powerful tool to investigate the properties of the very early Universe. The Planck nominal mission CMB maps yielded unprecedented constraints on primordial non-Gaussianity providing with the highest precision test of the standard model of inflation. Planck's high sensitivity also allowed to find evidence for the first time of the late-time non-Gaussianity arising from the Lensing-Integrated Sachs Wolfe (ISW) cross correlation. In this talk I will give details on the Planck data analysis and I will discuss the theoretical implications of the results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

The Planck collaboration, Planck 2013 Results XXIV A&A 2013/21554Google Scholar
The Planck collaboration, Planck 2013 Results XIX A&A 2013 arxiv:1303.5079Google Scholar
The Planck collaboration, Planck 2013 Results XVII A&A 2013 arXiv:1303.5077Google Scholar
The Planck collaboration, Planck 2013 Results XXIII A&A 2013 arXiv:1303.5083Google Scholar
Acquaviva, V., Bartolo, N., Matarrese, S., & Riotto, A., Nuclear Physics B 667, 119 (2003)Google Scholar
Bucher, M., van Tent, B., & Carvalho, C. S. 2010, MNRAS, 407, 2193Google Scholar
Fergusson, J. R., Liguori, M., & Shellard, E. P. S. 2010a, Phys. Rev. D, 82, 023502Google Scholar
Gangui, A., Lucchin, F., Matarrese, S., & Mollerach, S., Astrophys. J. 430, 447 (1994)CrossRefGoogle Scholar
Hanson, D., Smith, K. M., Challinor, A., & Liguori, M., Physical Review D 80 :083004 (2009)CrossRefGoogle Scholar
Komatsu, E., D. Spergel, & Wandelt, B., Astrophys. J. 634, 1419 (2005)Google Scholar
Komatsu, E. & Spergel, D. N. 2001, Phys. Rev. D, 63, 063002CrossRefGoogle Scholar
Lewis, A., et al. JCAP, 03(2011)018Google Scholar
Maldacena, J., Journal of High Energy Physics 5, 13 (2003), arXiv:astro-ph/0210603.CrossRefGoogle Scholar
Mangilli, A., Wandelt, B., Elsner, F., & Liguori, M.A&A 555, A82 (2013)Google Scholar
Mangilli, A., Verde, L., Physical Review D 80, 123007 (10/2009)CrossRefGoogle Scholar
Munshi, D. & Heavens, A. 2010, MNRAS 401 2406, arXiv:0904.4478Google Scholar
Salopek, D. S. & Bond, J. R., Phys. Rev. D 42, 3936 (1990).Google Scholar
Verde, L., Wang, L., Heavens, A. F., & Kamionkowski, M. 2000, MNRAS, 313, 141Google Scholar