Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T16:52:01.608Z Has data issue: false hasContentIssue false

Fragile Binaries: Observational Leverage on Difficult Astrophysical Problems

Published online by Cambridge University Press:  12 July 2007

T.D. Oswalt
Affiliation:
Dept. of Physics and Astronomy, Florida Institute of Technology 150West University Blvd., Melbourne, FL 32901 email: [email protected], [email protected], [email protected], [email protected]
K.B. Johnston
Affiliation:
Dept. of Physics and Astronomy, Florida Institute of Technology 150West University Blvd., Melbourne, FL 32901 email: [email protected], [email protected], [email protected], [email protected]
M. Rudkin
Affiliation:
Dept. of Physics and Astronomy, Florida Institute of Technology 150West University Blvd., Melbourne, FL 32901 email: [email protected], [email protected], [email protected], [email protected]
T. Vaccaro
Affiliation:
Dept. of Physics and Astronomy, Florida Institute of Technology 150West University Blvd., Melbourne, FL 32901 email: [email protected], [email protected], [email protected], [email protected]
D. Valls-Gabaud
Affiliation:
Laboratoire d'Astrophysique UMR CNRS 5572, Observatoire Midi-Pyrénées 14 Avenue Edouard Belin, F-31400 Toulouse Cdx, France. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Loosely bound, fragile binary stars, whose separations may reach ∼ 0.1 pc, are like open clusters with two coeval components. They provide a largely overlooked avenue for the investigation of many astrophysical questions. For example, the orbital distribution of fragile binaries with two long-lived main-sequence components provides a sensitive test of the cumulative effects of the Galactic environment. In pairs where one component is evolved, the orbits have been amplified by post-main-sequence mass loss, potentially providing useful constraints on the initial-to-final mass relation for white dwarfs. The nearly featureless spectra of cool white dwarfs usually provide little information about intrinsic radial velocity, full space motion, population membership, metallicity, etc. However, distant main sequence companions provide benchmarks against which those properties can be determined. In addition, the cooling ages of white dwarf components provide useful limits on the ages of their main sequence companions, independent of other stellar age determination methods. This paper summarizes some of the ways fragile binaries provide useful leverage on these and other problems of interest.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Allen, C., Poveda, A., & Hemández Alcántara, A. 2007, these proceedings, 405.Google Scholar
Barnes, S. 2001, An Assessment of the Rotation Rates of the Host Stars of Extrasolar Planets ApJ 561, 1095 CrossRefGoogle Scholar
Bergeron, P., Ruiz, M-T., & Leggett, S.K. 1997, The Chemical Evolution of Cool White Dwarfs and the Age of the Local Galactic Disk, ApJS 108, 339 CrossRefGoogle Scholar
Catalán, S., Ribas, I., Isern, J., García-Berro, E. & Allende Prieto, C. 2007, these proceedings, 380.Google Scholar
Chanamé, J. 2007, these proceedings, 316.Google Scholar
Chanamé, J. & Gould, A. 2004, Disk and Halo Wide Binaries from the Revised Luyten Catalog: Probes of Star Formation and MACHO Dark Matter, ApJ 601, 289 CrossRefGoogle Scholar
Cox, A. 2000 (ed.), Allen's Astrophysical Quantities, 4th ed. (New York: AIP Press), SpringerGoogle Scholar
Fahiri, J. 2006, White Dwarf-Red Dwarf Systems Resolved with the Hubble Space Telescope. I. First Results, ApJ 646, 480 CrossRefGoogle Scholar
Giclas, H.L., Burnham, R., & Thomas, N.G. 1971, Lowell Proper Motion Survey: Northern Hemisphere: The G-Numbered Stars. (Flagstaff: Lowell Observatory)Google Scholar
Greenstein, J.L., 1986, White Dwarfs in Wide Binaries I. Physical Properties, AJ, 92, 859 CrossRefGoogle Scholar
Hanson, B.M.S. 1999, Cooling Models for Old White Dwarfs, ApJ 520, 680 CrossRefGoogle Scholar
Hodgkin, S., Oppenheimer, B., Hambly, N. Jameson, R. Smartt, S. & Steele, I. 2000, Infrared Spectrum of an Extremely Cool White Dwarf Star, Nature 403, 57 CrossRefGoogle ScholarPubMed
Jeffries, R.D. 1997, On the Initial-Final Mass Relation and the Maximum Mass of White Dwarf Progenitors, MNRAS 288, 585 CrossRefGoogle Scholar
Johnston, K., Oswalt, T. & Valls-Gabaud, D. 2007 (this volume)Google Scholar
Kawka, A. & Vennes, S. 2006, Spectroscopic Identification of Cool White Dwarfs in the Solar Neighborhood, ApJ, 643, 402 CrossRefGoogle Scholar
Kiyaeva, O. 2007, these proceedings, 131.Google Scholar
Lachaume, R. et al. , 1999, Age Determinations of Main-Sequence Stars: Combining Different Methods, A&A 348, 897 Google Scholar
Lépine & Shara, M. 2005, A Catalog of Northern Stars with Annual Proper Motions Larger than 0″.15 (LSPM-NORTH Catalog), AJ 129, 14831522 Google Scholar
Liebert, J., Dahn, C. & Monet, D. 1988, Luminosity Function of White Dwarfs, ApJ 332, 891 CrossRefGoogle Scholar
Lineweaver, C.H. 1999, A Younger Age for the Universe, Science 284, 1503 CrossRefGoogle ScholarPubMed
Luyten, W.J., 1969, Proper Motion Survey with the Forty-Eight Inch Schmidt Telescope XXI: Double Stars with Common Proper Motion, et seq. (Univ. Minn. Press: Minneapolis)Google Scholar
Monteiro, H., Jao, W-C, Henry, T., Subasavage, J. & Beaulieu, T. 2006, Ages of White Dwarf – Red Subdwarf Systems, ApJ 638, 446 CrossRefGoogle Scholar
Oppenheimer, B. Saumon, D., Hodgkin, S.T., Jameson, R.F., Hambly, N.C., Chabrier, G., Filippenko, A.V., Coil, A.L., & Brown, M.E. 2001, Observations of Ultra-Cool White Dwarfs, ApJ 550, 448 CrossRefGoogle Scholar
Oswalt, T.D., Sion, E.M. 1989, On the Physical Separations of Wide White Dwarf Binaries, in IAU Coll. 114, White Dwarfs, Springer-Verlag: Berlin, p. 454 CrossRefGoogle Scholar
Oswalt, T.D. & Smith, J.A. 1995, On the Luminosity Function of White Dwarfs in Wide Binaries, in White Dwarfs, eds. Koester, D. & Werner, K., (Springer-Verlag: Heidelberg), p. 113 Google Scholar
Oswalt, T., Smith, J. & Wood, M. 1998, Wide Binaries: Probes of the Galaxy's Dark Matter Content, Transactions 23rd IAU G/A, Joint Disc. 10, Low Luminosity Stars, (Kluwer: Dordrecht)Google Scholar
Oswalt, T., Smith, J., Wood, M. & Hintzen, P. 1996, New Limits to the Galactic Disk Age from the Luminosity Function of White Dwarfs in Wide Binaries, Nature (Letters), 382, 692 CrossRefGoogle Scholar
Oswalt, T. & Strunk, D. 1994, A Catalog of White Dwarfs in Wide Binaries, BAAS 26, 901 Google Scholar
Poveda, A., Allen, C. & Hernández-Aleántara, A., 2007 these proceedings, 417CrossRefGoogle Scholar
Reid, I.N., Hawley, S.L. & Mateo, M. 1995, Chromospheric and Coronal Activity in Low-Mass Hyades Dwarfs, MNRAS 272, 828 Google Scholar
Saumon, D. & Jacobson, S.B. 1999, Pure Hydrogen Model Atmospheres for Very Cool White Dwarfs, ApJ 511, L107 CrossRefGoogle Scholar
Silvestri, N., Oswalt, T., Smith, J.A., Wood, M., Reid, N., & Sion, E., 2001, White Dwarfs in Common Proper Motion Binary System: Mass Distribution & Kinematics, AJ 121, 503 Google Scholar
Silvestri, N., Oswalt, T. & Hawley, S. 2002, Wide Binary Systems and the Nature of High-Velocity White Dwarfs, AJ 124, 1118 CrossRefGoogle Scholar
Silvestri, N., Hawley, S. & Oswalt, T. 2005, The Chromospheric Activity and Ages of M Dwarf Stars in Wide Binary Systems, ApJ 129, 2428 CrossRefGoogle Scholar
Sinachopoulos, D., Gauras, P., Medupe, Th., Ducourant, Ch. & Dionatos, O. 2007 these proceedings, 264Google Scholar
Sion, E. et al. 1991, The Physical Properties of Double Degenerate Wide Common Proper Motion Systems, AJ 101, 1476 CrossRefGoogle Scholar
Skumanich, A. 1972, Time Scales for CA II Emission Decay, Rotational Braking, and Lithium Depletion, ApJ 171, 565 CrossRefGoogle Scholar
Smith, J.A. & Oswalt, T. 1995, Exploration of the Lower Main Sequence Among Wide Binaries, in The Bottom of the Main Sequence and Beyond, ed. Tinney, C.G., (Springer–Verlag: Heidelberg), p. 24 Google Scholar
Smith, J.A., Silvestri, N.M., Oswalt, T.D., Harris, H.C., Kleinman, S.J., Munn, J.A., Nitta, A., & Rudkin, M.A. 2005, Sloan Digital Sky Survey: Proper Motion Systems Containing White Dwarfs, ASP Conf. 334, 127 Google Scholar
Soderblom, D.R., Duncan, D.K. & Johnson, D.R.H. 1991, The Chromospheric Emission-Age Relation for Stars of the Lower Main Sequence and Its Implications for the Star Formation Rate, ApJ 375, 722 CrossRefGoogle Scholar
Sterzik, M. & Durisen, R. 2004, Are Binary Separations Related to Their System Mass?, in The Environment & Evolution of Double & Multiple Stars, Proc. IAU Coll. 191, eds. Allen, C. & Scarfe, C.. Rev. Mex. de Astron. y Astrofisica (Conf.) 21, 58 Google Scholar
Valls-Gabaud, D. 1988, Evidence for Mass Loss in Visual Binary Stars, Ap&SS 142, 289 Google Scholar
Weidemann, V. 2000, Revision of the Initial-to-Final Mass Relation, A&A 363, 647 Google Scholar
Wood, M. & Oswalt, T. 1998, White Dwarf Cosmochronology I. Monte Carlo Simulations of Proper Motion and Magnitude Limited Samples Using Schmidt's Estimator, ApJ 497, 870CrossRefGoogle Scholar
Zinnecker, H. 1984, Ap&SS 99, 41 Google Scholar