No CrossRef data available.
Published online by Cambridge University Press: 02 May 2006
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a spacecraft-borne imaging and nulling interferometer for the near to mid-infrared spectral region. FKSI is a scientific and technological pathfinder to the Darwin and Terrestrial Planet Finder (TPF) missions and will be a high angular resolution system complementary to the James Webb Space Telescope (JWST). There are four key scientific issues the FKSI mission is designed to address. These are: 1.) characterization of the atmospheres of the known extra-solar giant planets, 2.) assay of the morphology of debris disks to look for resonant structures characteristic of the presence of extrasolar planets, 3.) study of circumstellar material around a variety of stellar types to better understand their evolutionary state, and in the case of young stellar systems, their planet forming potential, and 4.) measurement of detailed structures inside active galactic nuclei. We report results of simulation studies of the imaging capabilities of the FKSI, current progress on our nulling testbed, results from control system and residual jitter analysis, and selection of hollow waveguide fibers for wavefront cleanup.