Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:59:26.991Z Has data issue: false hasContentIssue false

Four new self-lensing binaries from Kepler: Radial velocity characterization and astrophysical implications

Published online by Cambridge University Press:  09 October 2020

Kento Masuda
Affiliation:
Institute for Advanced Study, Princeton, NJ08540, USA email: [email protected]
Hajime Kawahara
Affiliation:
Department of Earth and Planetary Science, The University of Tokyo, Tokyo113-0033, Japan Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo113-0033, Japan email: [email protected]
David W. Latham
Affiliation:
Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA02138, USA
Allyson Bieryla
Affiliation:
Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA02138, USA
Morgan MacLeod
Affiliation:
Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA02138, USA
Masanobu Kunitomo
Affiliation:
Department of Physics, School of Medicine, Kurume University, Fukuoka830-0011, Japan
Othman Benomar
Affiliation:
National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo181-8588, Japan
Wako Aoki
Affiliation:
National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo181-8588, Japan
Rights & Permissions [Opens in a new window]

Abstarct

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Kawahara et al. (2018) and Masuda et al. (2019), we reported the discovery of four self-lensing binaries consisting of F/G-type stars and (most likely) white dwarfs whose masses range from 0.2 to 0.6 solar masses. Here we present their updated system parameters based on new radial velocity data from the Tillinghast Reflector Echelle Spectrograph at the Fred Lawrence Whipple Observatory, and the Gaia parallaxes and spectroscopic parameters of the primary stars. We also briefly discuss the astrophysical implications of these findings.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, RAA, 12, 1197Google Scholar
Kawahara, H. & Masuda, K. 2019, AJ, 157, 218CrossRefGoogle Scholar
Kawahara, H., Masuda, K., MacLeod, M., et al. 2018, AJ, 155, 144CrossRefGoogle Scholar
Kruse, E. & Agol, E. 2014, Science, 344, 275CrossRefGoogle Scholar
Lin, J., Rappaport, S., Podsiadlowski, P., et al. 2011, ApJ, 732, 70CrossRefGoogle Scholar
Luo, A.-L., Zhao, Y.-H., Zhao, G., et al. 2015, RAA, 15, 1095Google Scholar
Marsh, T. R., Dhillon, V. S., & Duck, S. R. 1995, MNRAS, 275, 828CrossRefGoogle Scholar
Masuda, K., Kawahara, H., Latham, D. W., et al. 2019, ApJ (Letters), 881, L3Google Scholar
Mink, D. J. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 442, Astronomical Data Analysis Software and Systems XX, ed. I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots, 305Google Scholar
Noguchi, K., Aoki, W., Kawanomoto, S., et al. 2002, PASJ, 54, 855CrossRefGoogle Scholar
Szentgyorgyi, A. H. & Furész, G. 2007, in Revista Mexicana de Astronomia y Astrofisica, vol. 27, Vol. 28, Revista Mexicana de Astronomia y Astrofisica Conference Series, ed. S. Kurtz, 129133Google Scholar
Trimble, V. L. & Thorne, K. S. 1969, ApJ, 156, 1013CrossRefGoogle Scholar
Vos, J., Zorotovic, M., Vučković, M., Schreiber, M. R., & Østensen, R. 2018, MNRAS, 477, L40CrossRefGoogle Scholar
Yahalomi, D. A., Shvartzvald, Y., Agol, E., et al. 2019, ApJ, 880, 33CrossRefGoogle Scholar
Yee, S. W., Petigura, E. A., & von Braun, K. 2017, ApJ, 836, 77CrossRefGoogle Scholar