Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:41:16.675Z Has data issue: false hasContentIssue false

Forming terrestrial planets and delivering water

Published online by Cambridge University Press:  27 October 2016

Kevin J. Walsh*
Affiliation:
Southwest Research Institute Boulder CO, 80302, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Building models capable of successfully matching the Terrestrial Planet's basic orbital and physical properties has proven difficult. Meanwhile, improved estimates of the nature of water-rich material accreted by the Earth, along with the timing of its delivery, have added even more constraints for models to match. While the outer Asteroid Belt seemingly provides a source for water-rich planetesimals, models that delivered enough of them to the still-forming Terrestrial Planets typically failed on other basic constraints - such as the mass of Mars.

Recent models of Terrestrial Planet Formation have explored how the gas-driven migration of the Giant Planets can solve long-standing issues with the Earth/Mars size ratio. This model is forced to reproduce the orbital and taxonomic distribution of bodies in the Asteroid Belt from a much wider range of semimajor axis than previously considered. In doing so, it also provides a mechanism to feed planetesimals from between and beyond the Giant Planet formation region to the still-forming Terrestrial Planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Blum, J. & Wurm, G. 2008, ARAA, 46, 21 Google Scholar
Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A., & O'brien, D. P. 2006, Nature, 439, 821 Google Scholar
Brasser, R., Walsh, K. J., & Nesvorny, D. 2013, MNRAS, 433, 3417 Google Scholar
Carter, P. J., Leinhardt, Z. M., Elliott, T., Walter, M. J., & Stewart, S. T. 2015, eprint arXiv, 150.7504Google Scholar
Chambers, J. E. 2001, Icarus, 152, 205 CrossRefGoogle Scholar
Demeo, F. E. & Carry, B. 2014, Nature, 505, 629 Google Scholar
Dullemond, C. P. & Dominik, C. 2005, A&A, 434, 971 Google Scholar
Haisch, K. E., Lada, E. A., & Lada, C. J. 2001, ApJ (Letters), 553, L153 Google Scholar
Hansen, B. M. S. 2009, ApJ, 703, 1131 Google Scholar
Johansen, A., Jacquet, E., Cuzzi, J. N., Morbidelli, A., & Gounelle, M. 2015, arXiv, astro-ph.EP.Google Scholar
Kleine, T., Mezger, K., Palme, H., & Münker, C. 2004, Earth and Planetary Science Letters, 228, 109 Google Scholar
Kokubo, E. & Ida, S. 1998, Icarus, 131, 171 Google Scholar
Kokubo, E. & Ida, S. 2000, Icarus, 143, 15 Google Scholar
Lambrechts, M. & Johansen, A. 2012, A&A, 544, A32 Google Scholar
Minton, D. A. & Levison, H. F. 2014, Icarus, 232, 118 Google Scholar
Morbidelli, A., Lunine, J., O'brien, D., Raymond, S., & Walsh, K. 2012, Annu. Rev. Earth. Planet. Sci., 40, 251 CrossRefGoogle Scholar
Obrien, D., Morbidelli, A., & Bottke, W. 2007, Icarus, 191, 434 Google Scholar
O'brien, D. P., Morbidelli, A., & Levison, H. F. 2006, Icarus, 184, 39 Google Scholar
O'brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N., & Mandell, A. M. 2014, Icarus, 239, 74 CrossRefGoogle Scholar
Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. 2007, A&A, 461, 215 Google Scholar
Petit, J.-M., Morbidelli, A., & Chambers, J. 2001, Icarus, 153, 338 Google Scholar
Raymond, S. N., O'brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644 Google Scholar
Walsh, K., Morbidelli, A. and Raymond, S., O'brien, D., & Mandell, A. 2012, Meteoritics & Planetary Science, 47, 1941.Google Scholar
Walsh, K., Morbidelli, A., Raymond, S., O'brien, D., & Mandell, A. 2011, Nature, 475, 206 Google Scholar