Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:46:53.875Z Has data issue: false hasContentIssue false

Formation of the SMC WO+O binary AB8

Published online by Cambridge University Press:  30 December 2019

Chen Wang
Affiliation:
Argelander-Institut fur Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany email: [email protected]
Norbert Langer
Affiliation:
Argelander-Institut fur Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany email: [email protected]
Götz Gräfener
Affiliation:
Argelander-Institut fur Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany email: [email protected]
Pablo Marchant
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wolf-Rayet (WR) stars are stripped stellar cores that form through strong stellar wind or binary mass transfer. It is proposed that binary evolution plays a vital role in the formation of WR stars in low metallicity environments due to the metallicity dependance of stellar winds. However observations indicate a similar binary fraction of WR stars in the Small Magellanic Cloud (SMC) compared to the Milky Way. There are twelve WR stars in the SMC and five of them are members of binary systems. One of them (SMC AB8) harbors a WO type star. In this work we explore possible formation channels of this binary. We use the MESA code to compute large grids of binary evolution models, and then use least square fitting to compare our models with the observations. In order to reproduce the key properties of SMC AB8, we require efficient semiconvection to produce a sufficiently large convective core, as well as a longer He-burning lifetime. We also need a high mass loss rate during the WN stage to assist the removal of the outer envelope. In this way, we can reproduce the observed properties of AB8, except for the surface carbon to oxygen ratio, which requires further investigation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, A&A, 530, A115 Google Scholar
Crowther, P. A. 2007, ARAA, 45, 177 CrossRefGoogle Scholar
Crowther, P. A. & Hadfield, L. J. 2006, A&A, 449, 711 Google Scholar
Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003, MNRAS, 338, 360 CrossRefGoogle Scholar
Hamann, W.-R., Koesterke, L., & Wessolowski, U. 1995, A&A, 299, 151 Google Scholar
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368 10.1086/308158CrossRefGoogle Scholar
Lamers, H. J. G. L. M., Maeder, A., Schmutz, W., & Cassinelli, J. P. 1991, ApJ, 368, 538 10.1086/169717CrossRefGoogle Scholar
Marchant, P., Langer, N., Podsiadlowski, P., et al. 2016, A&A, 588, A50 Google Scholar
Nieuwenhuijzen, H. & de Jager, C. 1990, A&A, 231, 134 Google Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3 CrossRefGoogle Scholar
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15 CrossRefGoogle Scholar
Schootemeijer, A. & Langer, N. 2018, A&A, 611, 75 Google Scholar
Shenar, T., Hainich, R., Todt, H., et al. 2016, A&A, 591, A22 Google Scholar
Spruit, H. C. 2002, A&A, 381, 923 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2011, A&A, 369, 574 Google Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARAA, 44, 507 CrossRefGoogle Scholar