No CrossRef data available.
Published online by Cambridge University Press: 01 February 2008
As the number of detections of complex molecules keeps increasing, answering the question about their formation becomes more pressing. Many of the saturated organic molecules are found to have a very low gas phase formation rate and are therefore thought to be formed on the icy surfaces of dust grains. In the Sackler Laboratory for Astrophysics we started a systematic study of the surface reaction routes that have been suggested over the years. Here we present the experimental results on the formation of methanol and ethanol by hydrogenation reactions of carbon monoxide and acetaldehyde ice. Computer simulations of the surface processes under similar conditions using the continuous-time random-walk Monte Carlo technique reveal some of the underlying physical processes. A better understanding of the physical conditions in which these molecules are formed can help in the interpretation of the observational results. The CO hydrogenation results will appear in detail in Fuchs et al. (2008). For more details on ethanol formation we refer to Bisschop et al. (2007).