Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T17:14:48.643Z Has data issue: false hasContentIssue false

The formation of a penumbra as observed with the German VTT and SoHO/MDI

Published online by Cambridge University Press:  26 August 2011

Rolf Schlichenmaier
Affiliation:
Kiepenheuer Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany email: [email protected]
Nazaret Bello González
Affiliation:
Kiepenheuer Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany email: [email protected]
Reza Rezaei
Affiliation:
Kiepenheuer Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The generation of magnetic flux in the solar interior and its transport to the outer solar atmosphere will be in the focus of solar physics research for the next decades. One key-ingredient is the process of magnetic flux emergence into the solar photosphere, and the reorganization to form the magnetic phenomena of active regions like sunspots and pores.

On July 4, 2009, we observed a region of emerging magnetic flux, in which a proto-spot without penumbra forms a penumbra within some 4.5 hours. This process is documented by multi-wavelength observations at the German VTT: (a) imaging, (b) data with high resolution and temporal cadence acquired in Fe I 617.3 nm with the 2D imaging spectropolarimter GFPI, and (c) scans with the slit based spectropolarimeter TIP in Fe I 1089.6 nm. MDI contiuum maps and magnetograms are used to follow the formation of the proto-spot, and the subsequent evolution of the entire active region.

During the formation of the penumbra, the area and the magnetic flux of the spot increases. The additional magnetic flux is supplied by the adjacent region of emerging magnetic flux: As emerging bipole separate, the poles of the spot polarity migrate towards the spot, and finally merge with it. As more and more flux is accumulated, a penumbra forms. From inversions we infer maps for the magnetic field and the Doppler velocity (being constant along the line-of-sight). We calculate the magnetic flux of the forming spot and of the bipole footpoints that merge with the proto-spot. We witness the onset of the Evershed flow and the associated enhance of the field inclination as individual penumbral filaments form. Prior to the formation of individual penumbral sectors we detect the existence of ‘counter’ Evershed flows. These in-flows turn into the classical radial Evershed outflows as stable penumbra segments form.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bello González, N. & Kneer, F. 2008, Astron. Astrophys, 480, 265CrossRefGoogle Scholar
Bellot Rubio, L. R. 2003, in Astronomical Society of the Pacific Conference Series, ed. Trujillo-Bueno, J. & Sanchez Almeida, J., 301Google Scholar
Bellot Rubio, L. R. 2004, Rev. of Mod. Astron., 17, 21Google Scholar
Bellot Rubio, L. R. 2010, in Magnetic Coupling between the Interior and Atmosphere of the Sun, ed. Hasan, S. S. & Rutten, R. J., 193Google Scholar
Bellot Rubio, L. R., Balthasar, H., & Collados, M. 2004, Astron. Astrophys, 427, 319CrossRefGoogle Scholar
Bellot Rubio, L. R., Balthasar, H., Collados, M., & Schlichenmaier, R. 2003, Astron. Astrophys, 403, L47CrossRefGoogle Scholar
Borrero, J. M. 2009, Science in China G: Physics and Astronomy, 52, 1670CrossRefGoogle Scholar
Bumba, V. & Suda, J. 1984, Bulletin of the Astronomical Institutes of Czechoslovakia, 35, 28Google Scholar
Cheung, M. C. M., Rempel, M., Title, A. M., & Schüssler, M. 2010, Astrophys. J., 720, 233CrossRefGoogle Scholar
Cheung, M. C. M., Schüssler, M., Tarbell, T. D., & Title, A. M. 2008, Astrophys. J., 687, 1373CrossRefGoogle Scholar
Collados, M., Lagg, A., Díaz García, J. J., et al. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 368, The Physics of Chromospheric Plasmas, ed. Heinzel, P., Dorotovič, I., & Rutten, R. J., 611Google Scholar
Franz, M. & Schlichenmaier, R. 2009, Astron. Astrophys, 508, 1453CrossRefGoogle Scholar
Heinemann, T., Nordlund, Å., Scharmer, G. B., & Spruit, H. C. 2007, Astrophys. J., 669, 1390CrossRefGoogle Scholar
Leka, K. D. & Skumanich, A. 1998, Astrophys. J., 507, 454CrossRefGoogle Scholar
Lites, B. W., Skumanich, A. & Martinez Pillet, V. 1998, Astron. Astrophys, 333, 1053Google Scholar
McIntosh, P. S. 1981, in The Physics of Sunspots, ed. Cram, L. E. & Thomas, J. H., 7–54Google Scholar
Puschmann, K. G., Kneer, F., Seelemann, T., & Wittmann, A. D. 2006, Astron. Astrophys, 451, 1151CrossRefGoogle Scholar
Rempel, M., Schüssler, M., Cameron, R. H., & Knólker, M. 2009, Science, 325, 171CrossRefGoogle Scholar
Ruiz Cobo, B. & del Toro Iniesta, J. C. 1992, Astrophys. J., 398, 375CrossRefGoogle Scholar
Ryutova, M., Berger, T., & Title, A. 2008, Astrophys. J., 676, 1356CrossRefGoogle Scholar
Scharmer, G. B. & Spruit, H. C. 2006, Astron. Astrophys, 460, 605CrossRefGoogle Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, Solar Phys., 162, 129CrossRefGoogle Scholar
Schlichenmaier, R. 2002, Astron. Nachr., 323, 3033.0.CO;2-H>CrossRefGoogle Scholar
Schlichenmaier, R. 2009, Space Science Reviews, 144, 213CrossRefGoogle Scholar
Schlichenmaier, R., Bello González, N., Rezaei, R., & Waldmann, T. A. 2010a, Astron. Nachr., 331, 563CrossRefGoogle Scholar
Schlichenmaier, R., Jahn, K., & Schmidt, H. U. 1998, Astron. Astrophys, 337, 897Google Scholar
Schlichenmaier, R., Rezaei, R., Bello González, N., & Waldmann, T. A. 2010b, Astron. Astrophys, 512, L1CrossRefGoogle Scholar
Solanki, S. K. 2003, Astron. Astrophys. Rev., 11, 153CrossRefGoogle Scholar
Tortosa-Andreu, A. & Moreno-Insertis, F. 2009, Astron. Astrophys, 507, 949CrossRefGoogle Scholar
von der Lühe, O., Soltau, D., Berkefeld, T., & Schelenz, T. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. Keil, S. L. & Avakyan, S. V., Vol. 4853, 187–193Google Scholar
Wóger, F., von der Lühe, O., & Reardon, K. 2008, Astron. Astrophys, 488, 375CrossRefGoogle Scholar
Yang, G., Xu, Y., Wang, H., & Denker, C. 2003, Astrophys. J., 597, 1190CrossRefGoogle Scholar
Zwaan, C. 1992, in NATO ASIC Proc. 375: Sunspots. Theory and Observations, ed. Thomas, J. H. & Weiss, N. O., 75–100CrossRefGoogle Scholar