Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T16:08:47.922Z Has data issue: false hasContentIssue false

Formation and transformation of the 3:1 mean-motion resonance in 55 Cancri System

Published online by Cambridge University Press:  01 October 2007

Li-Yong Zhou
Affiliation:
Department of Astronomy, Nanjing University, Nanjing 210093, China email: [email protected]; [email protected]
Sylvio Ferraz-Mello
Affiliation:
Instituto de Astronômico, Geofísica, e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, 05508-900 São Paulo, Brazil email: [email protected]
Yi-Sui Sun
Affiliation:
Department of Astronomy, Nanjing University, Nanjing 210093, China email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report in this paper the numerical simulations of the capture into the 3:1 mean-motion resonance between the planets b and c in the 55 Cancri system. The results show that this resonance can be obtained by a differential planetary migration. The moderate initial eccentricities, relatively slower migration and suitable eccentricity damping rate increase significantly the probability of being trapped in this resonance. Otherwise, the system crosses the 3:1 commensurability avoiding resonance capture, to be eventually captured into a 2:1 resonance or some other higher-order resonances. After capture into resonance, the system can jump from one orbital configuration to another one if the migration continues, making a large region of the configuration space accessible for a resonance system. These investigations help us understand the diversity of resonance configurations and put some constraints on the early dynamical evolution of orbits in the extra-solar planetary systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Beaugé, C., Ferraz-Mello, S., Michtchenko, T. & Giuppone, C. 2008, Proceedings of IAUS249, this volumeGoogle Scholar
Fischer, D., Marcy, G., Butler, P., Vogt, S., Laughlin, G., Henry, G., Abouav, D., Peek, K., Wright, J., Johnson, J., McCarthy, C. & Isaacson, H. 2007, preprintGoogle Scholar
Kley, W. 2000, MNRAS 313, L47CrossRefGoogle Scholar
Kley, W. 2003, Cel. Mech. & Dyn. Astron. 87, 85CrossRefGoogle Scholar
Kley, W., Peitz, J. & Bryden, G. 2004, A&A 414, 735Google Scholar
Lee, M. & Peale, S. 2002, ApJ, 567, 596CrossRefGoogle Scholar
Marcy, G., Butler, P., Fischer, D., Vogt, S., Lissauer, J., & Rivera, E. 2001, ApJ, 556, 296CrossRefGoogle Scholar
McArthur, B., Endl, M., Cochran, W., Benedict, F., Fischer, D., Marcy, G., Butler, P., Naef, D., Mayor, M., Queloz, D., Udry, S. & Harrison, T. 2004, ApJ, 614, L81CrossRefGoogle Scholar
Michtchenko, T., Beaugé, C. & Ferraz-Mello, S. 2006, Cel. Mech. & Dyn. Astron., 94, 411CrossRefGoogle Scholar
Nelson, R. & Papaloizou, J. 2002, MNRAS, 333, L26CrossRefGoogle Scholar
Quillen, A. 2006, MNRAS, 365, 1367CrossRefGoogle Scholar
Ward, W. 1997, Icarus, 126, 261CrossRefGoogle Scholar
Zhou, L.-Y., Lehto, H., Sun, Y.-S. & Zheng, J. 2004, MNRAS, 350, 1495CrossRefGoogle Scholar