Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T21:28:40.576Z Has data issue: false hasContentIssue false

Formation and evolution of nuclear star clusters

Published online by Cambridge University Press:  07 March 2016

Alessandra Mastrobuono-Battisti
Affiliation:
Physics Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel email: [email protected]
Hagai B. Perets
Affiliation:
Physics Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nuclear stellar clusters (NSCs) are dense stellar systems known to exist at the center of most of the galaxies. Some of them host a central massive black hole (MBH). They are though to form through in-situ star formation following the infall of gas to the galactic center and/or because of the infall and merger of several stellar clusters. Here we explore the latter scenario by means of detailed self-consistent N-body simulations, proving that a NSC built by the infall and following merger of stellar clusters shows many of the observed features of the Milky Way NSC. We also explore the possibility that the infalling clusters host intermediate mass black holes (IMBHs). Once decayed to the center, the IMBHs act as massive-perturbers accelerating the relaxation of the NSC, filling the loss-cone and boosting the tidal disruption rate of stars up to a value larger than the observational estimates, therefore providing a cumulative constraint on the existence of IMBHs in NSCs. Studying how the properties of the infalling clusters map to the properties of the resulting NSC, we find that, in the IMBHs-free case, the infall mechanism is able to produce many different observational signatures in the form of age segregation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alexander, T., & Hopman, C. 2009, ApJ, 697, 1861CrossRefGoogle Scholar
Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Merritt, D. 2012, ApJ, 750, 111Google Scholar
Bahcall, J. N., & Wolf, R. A. 1976, ApJ, 209, 214Google Scholar
Böker, T. 2010, in IAUS, Vol. 266, IAUS, ed. de Grijs, R. & Lépine, J. R. D., 58–63Google Scholar
Bromm, V., Yoshida, N., & Hernquist, L. 2003, ApJL, 596, L135Google Scholar
Capuzzo-Dolcetta, R. 1993, ApJ, 415, 616Google Scholar
Ebisuzaki, T., Makino, J., & Tsuru, T. G., et al. 2001, ApJL, 562, L19Google Scholar
Gaburov, E., Harfst, S., & Portegies Zwart, S. 2009, NewAstron, 14, 630Google Scholar
Harfst, S., Gualandris, A., & Merritt, D., et al. 2007, NewAstron, 12, 357Google Scholar
Khabibullin, I., & Sazonov, S. 2014, MNRAS, 444, 1041Google Scholar
Launhardt, R., Zylka, R., & Mezger, P. G. 2002, A&A, 384, 112Google Scholar
Madau, P., & Rees, M. J. 2001, ApJL, 551, L27Google Scholar
Makino, J. 1998, Highlights of Astronomy, 11, 597Google Scholar
Mastrobuono-Battisti, A., & Perets, H. B. 2013, ApJ, 779, 85Google Scholar
Mastrobuono-Battisti, A., Perets, H. B., & Loeb, A. 2014, ApJ, 796, 40Google Scholar
Merritt, D. 2010, ApJ, 718, 739Google Scholar
Perets, H. B., Hopman, C., & Alexander, T. 2007, ApJ, 656, 709Google Scholar
Perets, H. B., & Mastrobuono-Battisti, A. 2014, ApJL, 784, L44Google Scholar
Schödel, R., Feldmeier, A., Neumayer, N., Meyer, L., & Yelda, S. 2014, ArXiv e-printsGoogle Scholar
Schödel, R., Merritt, D., & Eckart, A. 2008, Journal of Physics Conference Series, 131, 012044Google Scholar
Tremaine, S. D., Ostriker, J. P. & Spitzer, L. Jr., 1975, ApJ, 196, 407CrossRefGoogle Scholar