Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T01:54:20.046Z Has data issue: false hasContentIssue false

Flow Structure in Magnetic CVs

Published online by Cambridge University Press:  23 April 2012

Dmitry V. Bisikalo*
Affiliation:
Institute of Astronomy of the Russian Acad. of Sci., 48 Pyatnitskaya str., Moscow, Russia
Andrey G. Zhilkin
Affiliation:
Institute of Astronomy of the Russian Acad. of Sci., 48 Pyatnitskaya str., Moscow, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a review of the modern concept of physical processes which go on in magnetic CVs with the mass transfer between the components. Using results of 3D MHD simulations, we investigated variations of the main characteristics of accretion disks depending on the value of the magnetic induction on the surface of the accreting star. In the frame of a self-consistent description of the MHD flow structure in close binaries, we formulate conditions of the disk formation and find a criterion that separates two types of flows corresponding to intermediate polars (intermediate magnetic field) and polars (strong field).

The influence of asynchronous rotation of the accretor on the flow structure in magnetic close binaries is also discussed. Simulations show that the accretion instability arising in binaries with rapid rotation of accretor (“propeller” regime) can explain the mechanism of quasi-periodic dwarf nova outbursts observed in DQ Her systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bisikalo, D. V., Boyarchuk, A. A., Kaigorodov, P. V., Kuznetsov, O. A., & Matsuda, T. 2004, Astron. Rep., 48, 449Google Scholar
Bisikalo, D. V. & Matsuda, T. 2007, Hartkopf, W. I., Guinan, E. F. & Harmanec, P. (eds.), Proceedings of IAU Symposium 240 Binary Stars as Critical Tools & Tests in Contemporary Astrophysics (Cambridge: Cambridge University Press), p. 356Google Scholar
Boyarchuk, A. A., Bisikalo, D. V., Kuznetsov, O. A., & Chechetkin, V. M. 2002, Mass transfer in close binary stars, Taylor and Francis, LondonGoogle Scholar
Campbell, C. G. 1997, Magnetohydrodynamics in binary stars Dordrecht: Kluwer Acad. PublishersGoogle Scholar
Fridman, A. M. & Bisikalo, D. V. 2008, Phys. Usp., 51, 551CrossRefGoogle Scholar
Fabbiano, G., Hartmann, L., Raymond, J., Branduardi-Raymont, G., Matilsky, T., & Steiner, J. 1981, ApJ, 243, 911Google Scholar
Giovannelli, F., Gaudenzi, S., Rossi, C., & Piccioni, A. 1983, AcA, 33, 319Google Scholar
Ikhsanov, N. R., Neustroev, V. V., & Beskrovnaya, N. G. 2004, A&A, 421, 1131Google Scholar
King, A. R. 1993, MNRAS, 261, 144CrossRefGoogle Scholar
King, A. R. & Wynn, G. A. 1999, MNRAS, 310, 203Google Scholar
Kjurkchieva, D., Marchev, D., & Ogloza, W. 1999, Ap&SS, 262, 53Google Scholar
Koldoba, A. V., Romanova, M. M., Ustyugova, G. V., & Lovelace, R. V. E. 2002, ApJ, 576, L53CrossRefGoogle Scholar
Kononov, D. A., Kaigorodov, P. V., Bisikalo, D. V., Boyarchuk, A. A., Agafonov, M. I., Sharova, O. I., Sytov, A. Y.u., & Boneva, D. 2008, Astron. Rep., 52, 835CrossRefGoogle Scholar
Lipunov, V. M. 1992, Astrophysics of Neutron Stars Heidelberg: SpringerGoogle Scholar
Lubow, S. H. & Shu, F. H. 1975, ApJ, 198, 383Google Scholar
Lyubarskij, Yu.E., Postnov, K. A., & Prokhorov, M. E. 1994, MNRAS, 266, 583Google Scholar
Norton, A. J., Wynn, J. A., & Somerscales, R. V. 2004, ApJ, 614, 349Google Scholar
Norton, A. J., Butters, O. W., Parker, T. L., & Wynn, G. A. 2008, ApJ, 672, 524Google Scholar
Ogilvie, G. I. 2001, MNRAS, 325, 231CrossRefGoogle Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., Wick, J. V., & Lovelace, R. V. E. 2003, ApJ, 595, 1009CrossRefGoogle Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2004a, ApJ, 610, 920Google Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2004b, ApJ, 616, L151CrossRefGoogle Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2005, ApJ, 635, L165CrossRefGoogle Scholar
Ustyugova, G. V., Koldoba, A. V., Romanova, M. M., & Lovelace, R. V. E. 2006, ApJ, 646, 304Google Scholar
Warner, B. 2003, Cataclysmic Variable Stars Cambridge: Cambridge Univ. PressGoogle Scholar
Wynn, G. A. & King, A. R. 1995, MNRAS, 275, 9Google Scholar
Wynn, G. A., King, A. R., & Horne, K. 1997, MNRAS, 286, 436Google Scholar
Zhilkin, A. G. & Bisikalo, D. V. 2009, Astron. Rep., 53, 436CrossRefGoogle Scholar
Zhilkin, A. G. & Bisikalo, D. V. 2010a, Advances in Space Research, 45, 437CrossRefGoogle Scholar
Zhilkin, A. G. & Bisikalo, D. V. 2010b, Astron. Rep., 54, 840CrossRefGoogle Scholar
Zhilkin, A. G. & Bisikalo, D. V. 2010c, Astron. Rep., 54, 1063Google Scholar