Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T22:00:19.858Z Has data issue: false hasContentIssue false

The floor in the solar wind: status report

Published online by Cambridge University Press:  05 July 2012

E. W. Cliver*
Affiliation:
Space Vehicles Directorate, Air Force Research Laboratory Sunspot, NM, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cliver & Ling (2010) recently suggested that the solar wind had a floor or ground-state magnetic field strength at Earth of ~2.8 nT and that the source of the field was the slow solar wind. This picture has recently been given impetus by the evidence presented by Schrijver et al. (2011) that the Sun has a minimal magnetic state that was approached globally in 2009, a year in which Earth was imbedded in slow solar wind ~70% of the time. A precursor relation between the solar dipole field strength at solar minimum and the peak sunspot number (SSNMAX) of the subsequent 11-yr cycle suggests that during Maunder-type minima (when SSNMAX was ~0), the solar polar field strength approaches zero - indicating weak or absent polar coronal holes and an increase to nearly ~100% in the time that Earth spends in slow solar wind.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Balogh, A. & Smith, E. J. 2006, AGU Fall Meeting, Abstract No. SH44A-05Google Scholar
Beer, J., Tobias, S., & Weiss, N. 1998, Solar Phys. 181, 237Google Scholar
Berggren, A.-M. et al. , 2009, Geophys. Res. Lett. 36, L11801Google Scholar
Cliver, E. W. & Ling, A. G. 2010, Solar Phys. DOI: 10.1007/s11207-010-9657CrossRefGoogle Scholar
Crooker, N. U. & Owens, M. J. 2010, in: Cranmer, S., Hoeksema, T., & Kohl, J. (eds.) Proc. of SOHO 23: Understanding a Peculiar Minimum CS-428 (San Francisco: ASP), p. 279Google Scholar
Eddy, J. A. 1976, Science 192, 1189Google Scholar
Hoyt, D. V. & Schatten, K. H. 1998, Solar Phys. 181, 491CrossRefGoogle Scholar
Livingston, W. & Penn, M. 2009, Eos, Trans. Am. Geophys. Union 90, 257Google Scholar
Owens, M. J. et al. , 2008, Geophys. Res. Lett. 35, L20108CrossRefGoogle Scholar
Parker, E. N. 1975, Sci. Am. 233, 42Google Scholar
Richardson, I. G., Cliver, E. W., & Cane, H. V. 2000, J. Geophys. Res. 105, 18203Google Scholar
Richardson, I. G., Cane, H. V., & Cliver, E. W. 2002, J. Geophys. Res. 107, 1187Google Scholar
Schatten, K. H., Scherrer, P. H., Svalgaard, L., & Wilcox, J. M. 1978, Geophys. Res. Lett. 5, 411CrossRefGoogle Scholar
Scherrer, P. H. et al. , 1995 Solar Phys. 162, 129CrossRefGoogle Scholar
Schrijver, C. J., Livingston, W. C., Woods, T. N., & Mewaldt, R. A. 2011, Geophys. Res. Lett. 38, L06701Google Scholar
Siscoe, G. L. 1980, Rev. Geophys. Space Phys. 18, 647Google Scholar
Smith, E. J. & Balogh, A. 2008, Geophys. Res. Lett. 35, L22103Google Scholar
Steinhilber, F., Abreu, J. A., Beer, J., & McCracken, K. G. 2010, J. Geophys. Res. 115, A01104Google Scholar
Svalgaard, L., Cliver, E. W., & Kamide, Y. 2005, Geophys. Res. Lett. 32, L01014CrossRefGoogle Scholar
Svalgaard, L. & Cliver, E. W. 2007, ApJ (Lett.) 661, L203Google Scholar
Svalgaard, L. & Cliver, E. W. 2010, J. Geophys. Res. 115, A09111Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr., 2009, ApJ (Lett.) 649, L11Google Scholar