Published online by Cambridge University Press: 03 June 2005
A 2-dimensional Doppler coronagraph “NOGIS” (NOrikura Green-line Imaging System) at the Norikura Solar Observatory, NAOJ, is a unique imaging system that can provide both intensity and Doppler velocity of 2 MK plasma from the green coronal line emission $\lambda$5303 Å of Fe xiv. We present the first detection of a CME onset by NOGIS. The event was originally induced by a C9.1 confined flare that occurred on 2003 June 1 at an active region NOAA $\#$10365 near the limb. This flare triggered a filament eruption in AR 10365, which later evolved into a partial halo CME as well as an M6.5 flare at the same AR 10365 on 2003 June 2. The CME originated in a complex of two neighboring magnetic flux systems across the solar equator: AR 10365 and a bundle of face-on tall coronal loops. NOGIS observed i) a density enhancement in between the two flux systems in the early phase, ii) a blue-shifted bubble and jet that later appeared as (a part of) the CME, and iii) a red-shifted wave that triggered a periodic fluctuations in Doppler shifts in the face-on loops. These features are crucial to understand unsolved problems on a CME initiation (e.g., mass supply, magnetic configuration, and trigger mechanism) and on coronal loop oscillations (e.g., trigger and damping mechanisms). We stress a possibility that interaction between separatrices of the two flux systems played a key role on our event.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html