Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-21T21:11:06.477Z Has data issue: false hasContentIssue false

The first galactic stars and chemical enrichment in the halo

Published online by Cambridge University Press:  09 March 2010

Piercarlo Bonifacio*
Affiliation:
CIFIST Marie Curie Excellence Team GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; Place Jules Janssen 92190 Meudon, France email: [email protected] Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cosmic microwave background and the cosmic expansion can be interpreted as evidence that the Universe underwent an extremely hot and dense phase about 14 Gyr ago. The nucleosynthesis computations tell us that the Universe emerged from this state with a very simple chemical composition: H, 2H, 3He, 4He, and traces of 7Li. All other nuclei where synthesised at later times. Our stellar evolution models tell us that, if a low-mass star with this composition had been created (a “zero-metal” star) at that time, it would still be shining on the Main Sequence today. Over the last 40 years there have been many efforts to detect such primordial stars but none has so-far been found. The lowest metallicity stars known have a metal content, Z, which is of the order of 10−4Z. These are also the lowest metallicity objects known in the Universe. This seems to support the theories of star formation which predict that only high mass stars could form with a primordial composition and require a minimum metallicity to allow the formation of low-mass stars. Yet, since absence of evidence is not evidence of absence, we cannot exclude the existence of such low-mass zero-metal stars, at present. If we have not found the first Galactic stars, as a by product of our searches we have found their direct descendants, stars of extremely low metallicity (Z ≤ 10−3Z). The chemical composition of such stars contains indirect information on the nature of the stars responsible for the nucleosynthesis of the metals. Such a fossil record allows us a glimpse of the Galaxy at a look-back time equivalent to redshift z = 10, or larger. The last ten years have been full of exciting discoveries in this field, which I will try to review in this contribution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Andrievsky, S. M., Spite, M., Korotin, S. A., Spite, F., Bonifacio, P., Cayrel, R., Hill, V., & François, P. 2007, A&A, 464, 1081Google Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., Spite, F., Bonifacio, P., Cayrel, R., Hill, V., & François, P. 2008, A&A, 481, 481Google Scholar
Andrievsky, S. M., Spite, M., Korotin, S. A., Spite, F., François, P., Bonifacio, P., Cayrel, R., & Hill, V. 2009, A&A, 494, 1083Google Scholar
Aoki, W. 2009 IAU Symp. 265, p. 111CrossRefGoogle Scholar
Aoki, W., et al. 2007, ApJ, 660, 747CrossRefGoogle Scholar
Aoki, W., et al. 2009, A&A, 502, 569Google Scholar
Barklem, P. S., et al. 2005, A&A, 439, 129Google Scholar
Beers, T. C. 1999, Ap&SS, 265, 547Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARAA, 43, 531CrossRefGoogle Scholar
Beers, T. C., Preston, G. W., & Shectman, S. A. 1985, AJ, 90, 2089CrossRefGoogle Scholar
Beers, T. C., Preston, G. W., & Shectman, S. A. 1992, AJ, 103, 1987CrossRefGoogle Scholar
Behara, N. T., Ludwig, H.-G., Bonifacio, P., Sbordone, L., González Hernández, J. I., & Caffau, E. 2009a, MemSAI, 80, 732Google Scholar
Behara, N. T., Bonifacio, P., Ludwig, H., Sbordone, L., González Hernández, J. I., & Caffau, E. 2009b, IAU Symp. 265, p. 122CrossRefGoogle Scholar
Bergemann, M. & Gehren, T. 2008, A&A, 492, 823Google Scholar
Bergemann, M. & Gehren, T. 2009, IAU Symp. 265, p. 348CrossRefGoogle Scholar
Bergemann, M., Pickering, J. C., & Gehren, T. 2009, arXiv:0909.2178Google Scholar
Bessell, M. S. & Norris, J. 1984, ApJ, 285, 622CrossRefGoogle Scholar
Bonifacio, P., et al. 2006, Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites, ESO ASTROPHYSICS SYMPOSIA. ISBN 978-3-540-34135-2. Springer-Verlag, 2006, p. 232Google Scholar
Bonifacio, P. 2007, EAS Publications Series, 24, 251CrossRefGoogle Scholar
Bonifacio, P., et al. 2007, A&A, 462, 851Google Scholar
Bonifacio, P., et al. 2009a, A&A, 501, 519Google Scholar
Bonifacio, P., Caffau, E., & Ludwig, H. 2009b, MemSAI 80, 736Google Scholar
Caffau, E. & Ludwig, H.-G. 2007, A&A, 467, L11Google Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., Ayres, T. R., Bonifacio, P., Cayrel, R., Freytag, B., & Plez, B. 2008, A&A, 488, 1031Google Scholar
Casagrande, L. 2009, MemSAI, 80, 724Google Scholar
Cayrel, R., et al. 2004, A&A, 416, 1117Google Scholar
Cayrel, R., et al. 2007, A&A, 473, L37Google Scholar
Christlieb, N. 2003, Reviews in Modern Astronomy, 16, 191Google Scholar
Christlieb, N., et al. 2002, Nature, 419, 904CrossRefGoogle Scholar
Christlieb, N., et al. 2004, A&A, 428, 1027Google Scholar
Christlieb, N., Schörck, T., Frebel, A., Beers, T. C., Wisotzki, L., & Reimers, D. 2008, A&A, 484, 721Google Scholar
Cohen, J. G. & Huang, W. 2009, ApJ, 701, 1053CrossRefGoogle Scholar
Cohen, J. G., et al. 2004, ApJ, 612, 1107CrossRefGoogle Scholar
Cohen, J. G., McWilliam, A., Christlieb, N., Shectman, S., Thompson, I., Melendez, J., Wisotzki, L., & Reimers, D. 2007, ApJ, 659, L161CrossRefGoogle Scholar
Cohen, J. G., Christlieb, N., McWilliam, A., Shectman, S., Thompson, I., Melendez, J., Wisotzki, L., & Reimers, D. 2008, ApJ, 672, 320CrossRefGoogle Scholar
Collet, R., Asplund, M., & Trampedach, R. 2006, ApJ, 644, L121CrossRefGoogle Scholar
Collet, R., Asplund, M., & Trampedach, R. 2007, A&A, 469, 687Google Scholar
Collet, R., Nordlund, Å., Asplund, M., Hayek, W., & Trampedach, R. 2009, MemSAI, 80, 716Google Scholar
Frebel, A., et al. 2005, Nature, 434, 871CrossRefGoogle Scholar
Frebel, A., Allende Prieto, C., Roederer, I. U., Shetrone, M., Rhee, J., Sneden, C., Beers, T. C., & Cowan, J. J. 2008a, New Horizons in Astronomy, ASPC, 393, 203Google Scholar
Frebel, A., Collet, R., Eriksson, K., Christlieb, N., & Aoki, W. 2008b, ApJ, 684, 588CrossRefGoogle Scholar
Frebel, A., Simon, J. D., Geha, M., & Willman, B. 2009, arXiv:0902.2395Google Scholar
Freytag, B., Steffen, M., & Dorch, B. 2002, Astronomische Nachrichten, 323, 2133.0.CO;2-H>CrossRefGoogle Scholar
Freytag, B., Steffen, M., Wedemeyer-Böhm, S., & Ludwig, H.-G. 2003, CO5BOLD User Manual, http://www.astro.uu.se/bf/co5bold_main.htmlGoogle Scholar
Gehren, T., Shi, J. R., Zhang, H. W., Zhao, G., & Korn, A. J. 2006, A&A, 451, 1065Google Scholar
GonzálezHernández, J. I. Hernández, J. I., et al. 2008, A&A, 480, 233Google Scholar
GonzálezHernández, J. I. Hernández, J. I., et al. 2009, A&A, 505, L13Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U. G., Nordlund, Å., & Plez, B. 2008, A&A, 486, 951Google Scholar
Helmi, A., et al. 2006, ApJ, 651, L121CrossRefGoogle Scholar
Hill, V. 2009, IAU Symp. 265, p. 219CrossRefGoogle Scholar
Ito, H., Aoki, W., Honda, S., & Beers, T. C. 2009a, ApJ, 698, L37CrossRefGoogle Scholar
Ito, H., Aoki, W., Honda, S., Beers, T. C., & Tominaga, N. 2009b, IAU Symp. 265, p. 124CrossRefGoogle Scholar
Kučinskas, A., Ludwig, H.-G., Caffau, E., & Steffen, M. 2009, MemSAI, 80, 720Google Scholar
Lai, D. K., Bolte, M., Johnson, J. A., & Lucatello, S. 2004, AJ, 128, 2402CrossRefGoogle Scholar
Lai, D. K., Bolte, M., Johnson, J. A., Lucatello, S., Heger, A., & Woosley, S. E. 2008, ApJ, 681, 1524CrossRefGoogle Scholar
Lai, D. K., Rockosi, C. M., Bolte, M., Johnson, J. A., Beers, T. C., Lee, Y. S., Allende Prieto, C., & Yanny, B. 2009, ApJ, 697, L63CrossRefGoogle Scholar
Ludwig, H.-G. 1992, PhDT, University of KielGoogle Scholar
Ludwig, H.-G., Jordan, S., & Steffen, M. 1994, A&A, 284, 105Google Scholar
Ludwig, H.-., Caffau, E., Steffen, M., Freytag, B., Bonifacio, P., & Kučinskas, A. 2009, MemSAI, 80, 708Google Scholar
Ludwig, H.-G., Behara, N. T., Steffen, M., & Bonifacio, P. 2009, A&A, 502, L1Google Scholar
Mashonkina, L., et al. 2008, A&A, 478, 529Google Scholar
Masseron, T., et al. 2006, A&A, 455, 1059Google Scholar
McWilliam, A., Preston, G. W., Sneden, C., & Searle, L. 1995, AJ, 109, 2757CrossRefGoogle Scholar
Meléndez, J. & Cohen, J. G. 2009, ApJ, 699, 2017CrossRefGoogle Scholar
Mélendez, J., Casagrande, L., & Ramirez, I. 2009 IAU Symp. 265, p. 71CrossRefGoogle Scholar
Nordlund, Å. 1982, A&A, 107, 1Google Scholar
Norris, J. E., Christlieb, N., Korn, A. J., Eriksson, K., Bessell, M. S., Beers, T. C., Wisotzki, L., & Reimers, D. 2007, ApJ, 670, 774CrossRefGoogle Scholar
Norris, J. E., Gilmore, G., Wyse, R. F. G., Wilkinson, M. I., Belokurov, V., Evans, N. W., & Zucker, D. B. 2008, ApJ, 689, L113CrossRefGoogle Scholar
Perryman, M. A. C., et al. 2001, A&A, 369, 339Google Scholar
Prantzos, N. 2008, EAS Publications Series, 32, 311CrossRefGoogle Scholar
Rastegaev, D. A. 2009, Astronomy Letters, 35, 466CrossRefGoogle Scholar
Rich, J. A. & Boesgaard, A. M. 2009, ApJ, 701, 1519CrossRefGoogle Scholar
Roederer, I. U., et al. 2008, ApJ, 679, 1549CrossRefGoogle Scholar
Roederer, I. U. 2009 IAU Symp. 265, p. 368CrossRefGoogle Scholar
Sbordone, L., Bonifacio, P., Caffau, E., et al. 2009 IAU Symp. 265, p. 75CrossRefGoogle Scholar
Shetrone, M. D., Côté, P., & Sargent, W. L. W. 2001, ApJ, 548, 592CrossRefGoogle Scholar
Shi, J. R., Gehren, T., Mashonkina, L., & Zhao, G. 2009, A&A, 503, 533Google Scholar
Smiljanic, R., Pasquini, L., Bonifacio, P., Galli, D., Gratton, R. G., Randich, S., & Wolff, B. 2009a, A&A, 499, 103Google Scholar
Smiljanic, R., Pasquini, L., Bonifacio, P., Galli, D., Barbuy, B., Gratton, R., & Randich, S. 2009b, IAU Symp. 265, p. 134CrossRefGoogle Scholar
Sneden, C., Cowan, J.J., & Gallino, R. 2009 IAU Symp. 265, p. 46CrossRefGoogle Scholar
Sneden, C., Cowan, J. J., & Gallino, R. 2008, ARAA, 46, 241CrossRefGoogle Scholar
Spite, M., Spite, F., Bonifacio, P., Andrievsky, S., Cayrel, R., François, P., & Korotin, S. 2009 IAU Symp. 265, p. 380CrossRefGoogle Scholar
Steffen, M., Cayrel, R., Bonifacio, P., Ludwig, H.-G., & Caffau, E. 2009 IAU Symp. 265, p. 23CrossRefGoogle Scholar
Stein, R. F. & Nordlund, A. 1998, ApJ, 499, 914CrossRefGoogle Scholar
Takeda, Y., Hashimoto, O., Taguchi, H., Yoshioka, K., Takada-Hidai, M., Saito, Y., & Honda, S. 2005, PASJ, 57, 751CrossRefGoogle Scholar
Tan, K. F., Shi, J. R., & Zhao, G. 2009, MNRAS, 392, 205CrossRefGoogle Scholar
Thompson, I. B., et al. 2008, ApJ, 677, 556CrossRefGoogle Scholar
Venn, K. A. & Lambert, D. L. 2008, ApJ, 677, 572CrossRefGoogle Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., & Holweger, H. 2004, A&A, 414, 1121Google Scholar
Yong, D., Lambert, D. L., & Ivans, I. I. 2003, ApJ, 599, 1357CrossRefGoogle Scholar
Yong, D., Lambert, D. L., Allende Prieto, C., & Paulson, D. B. 2004, ApJ, 603, 697CrossRefGoogle Scholar
Yong, D., Aoki, W., & Lambert, D. L. 2006, ApJ, 638, 1018CrossRefGoogle Scholar
York, D. G., et al. 2000, AJ, 120, 1579CrossRefGoogle Scholar