Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T09:56:31.483Z Has data issue: false hasContentIssue false

Fermi-LAT searches for γ-ray pulsars

Published online by Cambridge University Press:  20 March 2013

P. M. Saz Parkinson
Affiliation:
Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Large Area Telescope (LAT) on the Fermi satellite is the first γ-ray instrument to discover pulsars directly via their γ-ray emission. Roughly one third of the 117 γ-ray pulsars detected by the LAT in its first three years were discovered in blind searches of γ-ray data and most of these are undetectable with current radio telescopes. I review some of the key LAT results and highlight the specific challenges faced in γ-ray (compared to radio) searches, most of which stem from the long, sparse data sets and the broad, energy-dependent point-spread function (PSF) of the LAT. I discuss some ongoing LAT searches for γ-ray millisecond pulsars (MSPs) and γ-ray pulsars around the Galactic Center. Finally, I outline the prospects for future γ-ray pulsar discoveries as the LAT enters its extended mission phase, including advantages of a possible modification of the LAT observing profile.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abdo, A. A., Ackermann, M., Atwood, W. B., et al. 2008, Science, 322, 1218Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009a, ApJS, 183, 46Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009b, Science, 325, 840CrossRefGoogle Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009c, Science, 325, 848CrossRefGoogle Scholar
Ackermann, M., et al. 2012, ApJ, 753, 83Google Scholar
Atwood, W. B., Ziegler, M., Johnson, R. P., & Baughman, B. M. 2006, ApJL, 652, L49Google Scholar
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071Google Scholar
Belfiore, A., PhD Thesis, Università degli studi di Pavia, 2012Google Scholar
Deneva, J. S., Cordes, J. M., & Lazio, T. J. W. 2009, ApJL, 702, L177CrossRefGoogle Scholar
Hooper, D. & Goodenough, L. 2011, Physics Letters B, 697, 412Google Scholar
Kerr, M. 2011, ApJ, 732, 38Google Scholar
Pletsch, H. J., Guillemot, L., Allen, B., et al. 2012a, ApJ, 744, 105Google Scholar
Pletsch, H. J., Guillemot, L., Allen, B., et al. 2012b, ApJ, 755, 20Google Scholar
Ransom, S. M., PhD Thesis, Harvard University, 2001Google Scholar
Ransom, S. M., Ray, P. S., Camilo, F., et al. 2011, ApJL, 727, L16Google Scholar
Ray, P. S., Kerr, M., Parent, D., et al. 2011, ApJS, 194, 17Google Scholar
Ray, P. S., Abdo, A. A., Parent, D., et al. 2012, arXiv:1205.3089Google Scholar
Romani, R. W. & Shaw, M. S. 2011, ApJL, 743, L26Google Scholar
Romani, R. W. 2012, ApJL, 754, L25Google Scholar
Saz Parkinson, P. M., Dormody, M., Ziegler, M., et al. 2010, ApJ, 725, 571CrossRefGoogle Scholar
Saz Parkinson, P. M. 2011, arXiv:1101.3096Google Scholar
Saz Parkinson, P. M. 2012, Proceedings, γ 2012, Heidelberg, Germany, 9-13 July 2012, arXiv:1210.7525Google Scholar
Thompson, D. J. 2005, ApJS, 157, 324, arXiv:astro-ph/0412376Google Scholar
Thompson, D. J. 2008, Reports on Progress in Physics, 71, 116901Google Scholar
Weniger, C. 2012, JCAP, 8, 7CrossRefGoogle Scholar
Ziegler, M., Baughman, B. M., Johnson, R. P., & Atwood, W. B. 2008, ApJ, 680, 620Google Scholar