Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T01:17:21.510Z Has data issue: false hasContentIssue false

Fast Radio Bursts: neutron stars, magnetars or something else?

Published online by Cambridge University Press:  27 February 2023

Michael Kramer*
Affiliation:
MPI für Radioastronomy, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected] Jodrell Bank Centre for Astrophysics, University of Manchester Oxford Road, Manchester M13 9PL, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fast Radio Bursts (FRBs) are millisecond-long bursts of radio emission of extragalactic origin. The nature or FRBs is still unknown. Whether all FRBs are representatives of the same source population, or whether multiple underlying populations exist, is also unknown. One class that stands out is that of the “repeaters”, i.e. FRBs from which multiple bursts have been detected. In these cases, appropriate models should be non-cataclysmic but yet being able to create powerful coherent radio emission. Magnetars are among those source types that are considered as possible explanation for (repeating) FRBs. This review will summarise the basic properties of FRBs and those of magnetars to provide a critical assessment of the possible physical connection between these classes of sources. We conclude that while magnetars may indeed be related to the FRB phenomenon, it is unlikely that they explain all FRBs, i.e. at least two classes of FRBs exist.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Amiri, M., et al., 2021, ApJS, 257, 59 Google Scholar
Bailes, M., et al., 2021, MNRAS, 503, 5367 CrossRefGoogle Scholar
Bannister, K. W., et al., 2019, Science. 365, 565 CrossRefGoogle Scholar
Beloborodov, A. M., 2021, ApJ, 922, L7 CrossRefGoogle Scholar
Bochenek, C. D., Ravi, V., Belov, K. V., Hallinan, G., Kocz, J., Kulkarni, S. R., McKenna, D. L., 2020, Nature, 587, 59 CrossRefGoogle Scholar
CHIME/FRB Collaboration et al., 2020, Nature, 587, 54 CrossRefGoogle Scholar
Caleb, M., Keane, E., 2021, Universe, 7, 453 CrossRefGoogle Scholar
Caleb, M., Spitler, L. G., Stappers, B. W., 2018, Nature, 2, 839 Google Scholar
Caleb, M., Stappers, B. W., Rajwade, K., Flynn, C., 2019, MNRAS, 484, 5500 Google Scholar
Caleb, M., Stappers, B. W., Flynn, C., 2019, MNRAS, 485, 2281 CrossRefGoogle Scholar
Caleb, M., et al., 2022, MNRAS, 510, 1996 Google Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., Reynolds, J., Helfand, D. J., Zimmerman, N., Sarkissian, J., 2006, Nature, 442, 892 CrossRefGoogle Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., Reynolds, J., 2007, ApJL, 666, L93 CrossRefGoogle Scholar
Champion, D., et al., 2020, MNRAS, 498, 6044 CrossRefGoogle Scholar
Chatterje, S., et al. 2017, Nature, 541, 58 CrossRefGoogle Scholar
Chime/Frb Collaboration et al., 2020, Nature, 582, 351 CrossRefGoogle Scholar
Cordes, J. M., Chatterjee, S., 2019, Ann. Rev. Astr. Ap., 57, 417 CrossRefGoogle Scholar
Cruces, M., et al., 2021, MNRAS, 500, 448 CrossRefGoogle Scholar
Dai, S., et al., 2019, ApJ, 874, L14 CrossRefGoogle Scholar
Desvignes, G., et al., 2018, ApJ, 852, L12 CrossRefGoogle Scholar
Eatough, R. P., et al., 2013, Nature, 501, 391 CrossRefGoogle Scholar
Eilek, J. A., Hankins, T. H., 2016, Journal of Plasma Physics, 82, 635820302 CrossRefGoogle Scholar
Hilmarsson, G. H., Spitler, L. G., Main, R. A., Li, D. Z., 2021, MNRAS, 508, 5354 CrossRefGoogle Scholar
James, C. W., et al., 2020, MNRAS, 495, 2416 CrossRefGoogle Scholar
Kaspi, V. M., Beloborodov, A. M., 2017, Ann. Rev. Astr. Ap., 55, 261 CrossRefGoogle Scholar
Keane, E. F., et al., 2016, Nature, 530, 453 CrossRefGoogle Scholar
Kirsten, F., et al., 2021a, arXiv e-prints, p. arXiv:2105.11445Google Scholar
Kirsten, F., Snelders, M. P., Jenkins, M., Nimmo, K., van den Eijnden, J., Hessels, J. W. T., Gawroński, M. P., Yang, J., 2021b, Nature Astronomy, 5, 414 CrossRefGoogle Scholar
Kramer, M., Stappers, B. W., Jessner, A., Lyne, A. G., Jordan, C. A., 2007, MNRAS, 377, 107 Google Scholar
Kumar, P., Shannon, R. M., Lower, M. E., Bhandari, S., Deller, A. T., Flynn, C., Keane, E. F., 2021, arXiv e-prints, p. arXiv:2109.11535Google Scholar
Lazaridis, K., Jessner, A., Kramer, M., Stappers, B. W., Lyne, A. G., Jordan, C. A., Serylak, M., Zensus, J. A., 2008, MNRAS, 390, 839 CrossRefGoogle Scholar
Levin, L., et al., 2010, ApJ, 721, L33 CrossRefGoogle Scholar
Li, D., et al., 2021, Nature, 598, 267 CrossRefGoogle Scholar
Lorimer, D. R., Kramer, M., 2005, Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge, England Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., Crawford, F., 2007, Science, 318, 777 CrossRefGoogle Scholar
Macquart, J. P., et al., 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14). p. 55 Google Scholar
Macquart, J. P., et al., 2020, Nature, 581, 391 CrossRefGoogle Scholar
Majid, W. A., et al., 2021, ApJ, 919, L6 CrossRefGoogle Scholar
Metzger, B. D., Sridhar, N., Margalit, B., Beniamini, P., Sironi, L., 2022, ApJ, 925, 135 CrossRefGoogle Scholar
Michilli, D., et al., 2018, Nature, 553, 182 CrossRefGoogle Scholar
Nimmo, K., et al., 2021a, arXiv e-prints, p. arXiv:2105.11446Google Scholar
Nimmo, K., et al., 2021b, Nature Astronomy, 5, 594 CrossRefGoogle Scholar
Petroff, E., Hessels, J. W. T., Lorimer, D. R., 2019, A&ARv, 27, 4 Google Scholar
Pleunis, Z., et al., 2021, arXiv e-prints, p. arXiv:2106.04356Google Scholar
Rajwade, K. M., et al., 2020, MNRAS, 495, 3551 CrossRefGoogle Scholar
Spitler, L. G., et al., 2016, Nature, 531, 202 Google Scholar
The CHIME/FRB Collaboration et al., 2021, arXiv e-prints, p. arXiv:2107.08463Google Scholar
Thornton, D., et al., 2013, Science, 341, 53 CrossRefGoogle Scholar
Torne, P., et al., 2022, arXiv e-prints, p. arXiv:2201.07820Google Scholar