Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T09:21:11.606Z Has data issue: false hasContentIssue false

Extragalactic Diffuse Interstellar Bands: A Universal Problem

Published online by Cambridge University Press:  21 February 2014

M. A. Cordiner*
Affiliation:
Astrochemistry Laboratory and The Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Code 691, 8800 Greenbelt Road, Greenbelt, MD 20771, USA email: [email protected] Department of Physics, The Catholic University of America Washington, DC 20064, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first extragalactic diffuse interstellar band (DIB) detections were of λ4430 in the Large and Small Magellanic Clouds (LMC and SMC) in the 1960s and 70s. Driven mainly by the increased sensitivity afforded by 8-10 m-class telescopes, the last 13 years have witnessed an explosion of DIB discoveries throughout the nearby and distant universe. This review focuses on the history of extragalactic DIB studies, including some of the important results that have come out of this field, and looks to the future for what can be learned about DIBs in external galaxies with the next generation of large telescopes. So far, DIBs have been observed in the Magellanic Clouds, starburst galaxies, DLAs, and nearby (≤30 Mpc distant) spiral galaxies, and are found to be ubiquitous in the diffuse interstellar medium (ISM) of extragalactic environments wherever dust is present. Important results include the finding that DIB carriers are significantly more closely related to dust than to neutral hydrogen, and that the λ6283 DIB tends to be anomalously weak in low-metallicity sightlines.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Barnes, K. L., van Zee, L., & Skillman, E. 2011, ApJ, 743, 137Google Scholar
Blades, J. C. & Madore, B. F. 1979, A&A, 71, 359Google Scholar
Cordiner, M. A., Cox, N. L. J., Trundle, C., et al. 2008, A&A, 480, L13Google Scholar
Cordiner, M. A., Smith, K. T., Cox, N. L. J., et al. 2008, A&A, 492, L5Google Scholar
Cordiner, M. A., Cox, N. L. J., Evans, C. Jet al. 2011, ApJ, 726, 39CrossRefGoogle Scholar
Cox, N. L. J., Cordiner, M. A., Cami, J., et al. 2006 A&A, 447, 991Google Scholar
Cox, N. L. J., Cordiner, M. A., Ehrenfreund, P., et al. 2007, A&A, 470, 941Google Scholar
Cox, N. L. J. & Patat, F. 2008, A&A, 485, 9Google Scholar
Cox, N. L. J. & Cordiner, M. A. 2008, IAUS, 251, 237Google Scholar
Ellison, S. L., York, B. A., Murphy, M. M. T., et al. 2008, MNRAS, 383, L30Google Scholar
Ehrenfreund, P. & Jenniskens, P. 1995, in The Diffuse Interstellar Bands, ed. Tielens, A. G. G. M. & Snow, T. P. (Dordrecht: Kluwer Academic Publishers), 202, 105CrossRefGoogle Scholar
Ehrenfreund, P., Cami, J., Jiménez-Vicente, J., et al. 2002, ApJ, 576, L117Google Scholar
Friedman, S. D., York, D. G., McCall, B. J., et al. 2011, ApJ, 727, 33Google Scholar
Heckman, T. M. & Lehnert, M. D. 2000, ApJ, 537, 690Google Scholar
Houziaux, L., Nandy, K., & Morgan, D. H. 1980, A&A, 84, 377Google Scholar
Houziaux, L., Nandy, K., & Morgan, D. H. 1985, MNRAS, 215, 5Google Scholar
Hutchings, J. B. 1966, MNRAS, 131, 299Google Scholar
Junkkarinen, V. T., Cohen, R. D., Beaver, E. A., et al. 2004, ApJ, 614, 658Google Scholar
Lawton, B., Churchill, C. W., York, B., et al. 2008, AJ, 136, 994CrossRefGoogle Scholar
Magrini, L., Vilchez, J. M., Mampaso, A., Corradi, R. L. M., & Leisy, P. 2007, A&A, 470, 865Google Scholar
Massey, P., Olsen, K. A. G., & Hodge, P. W. 2006, AJ, 131, 2478Google Scholar
Pettini, M. & Dodorico, S. 1986, ApJ, 310, 700Google Scholar
Rich, R. M. 1987, AJ, 94, 651Google Scholar
Smith, K. T. 2010, PhD thesis, The University of NottinghamGoogle Scholar
Snow, T. P. 2002, in 17th IAP Colloq. on Gaseous Matter in Galaxies and Intergalactic Space, ed. Ferlet, R., Lemoine, M., Désert, J. M., & Raban, B. (Paris: Frontier Group), 63Google Scholar
Sollerman, J., Cox, N. L. J., Mattila, S., et al. 2005, A&A, 429, 559Google Scholar
Srianand, R., Gupta, N., Rahmani, H., et al. 2013, MNRAS, 428, 2198CrossRefGoogle Scholar
Thöne, C. C., Michalowski, M. J., & Leloudas, G. 2008, ApJ, 698, 1307Google Scholar
Verley, S., Corbelli, E., Giovanardi, C., & Hunt, L. K. 2009, A&A, 493, 453Google Scholar
Vidal-Madjar, A., Andreani, P., Cristiani, S., et al. 1987, A&A, 177, L17Google Scholar
Vladilo, G., Crivellari, L., Molaro, P., & Beckman, J. E., 1987, A&A, 182, L59Google Scholar
Walker, G. A. H. 1963, MNRAS, 125, 141CrossRefGoogle Scholar
Welty, D. E., Federman, S. R., Gredel, R., Thorburn, J. A., & Lambert, D. L. 2006, ApJS, 165, 138Google Scholar
Yuan, H. B. & Liu, X. W. 2012, MNRAS, 425, 1763CrossRefGoogle Scholar
York, B. A., Ellison, S. L., Lawton, B.et al. 2006, ApJ, 647, L29Google Scholar