Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:10:48.510Z Has data issue: false hasContentIssue false

Extracting oscillation frequencies from data: various approaches

Published online by Cambridge University Press:  18 February 2014

C. A. Engelbrecht*
Affiliation:
Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Asteroseismology depends absolutely on the detection of authentic pulsation signatures in stars. A variety of mathematical and statistical tools have been developed to extract such signatures from photometric and spectroscopic time series. The earliest tools were developed on the platform of Fourier analysis, and Fourier-based methodology still plays a major part in the detection of pulsation signatures in the present day. Alternative approaches have been gaining ground in recent years. This article offers a brief but broad review of the various methodologies for detecting authentic periodic signals that have been developed over the past few decades, including examples of their pitfalls and successes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, Asteroseismology (Springer)Google Scholar
Baluev, R. V. 2008, MNRAS, 385, 1279Google Scholar
Baluev, R. V. 2009, MNRAS, 395, 1541Google Scholar
Baluev, R. V. 2012, MNRAS, 422, 2372Google Scholar
Baluev, R. V. 2013a, MNRAS, 431, 1167Google Scholar
Baluev, R. V. 2013b, MNRAS, 436, 807Google Scholar
Barning, F. J. M. 1963, BAN, 17, 22Google Scholar
Bazot, M., Bourguignon, S., & Christensen-Dalsgaard, J. 2012, MNRAS, 427, 1847CrossRefGoogle Scholar
Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 608CrossRefGoogle Scholar
Bourguignon, S., Carfantan, H., & Böhm, T. 2007, A&A, 462, 379Google Scholar
Bourguignon, S., Carfantan, H., & Böhm, T. 2008, Statistical Methodology, 5, 318Google Scholar
Breger, M., Stich, J., Garrido, R., et al. 1993, A&A, 271, 482Google Scholar
Brewer, D. J. & Stello, D. 2009, MNRAS, 395, 2226Google Scholar
Cincotta, P. M., Mendez, M., & Nunez, J. A. 1995, ApJ, 449, 231CrossRefGoogle Scholar
Cincotta, P. M., Helmi, A., Mendez, M., Nunez, J. A., & Vucetich, H. 1999, MNRAS, 302, 582CrossRefGoogle Scholar
Clarke, D. 2002, A&A, 386, 763Google Scholar
Cumming, A., Marcy, G. W., & Butler, R. P. 1999, ApJ, 526, 890Google Scholar
Deeming, T. J. 1975, Ap&SS, 36, 137Google Scholar
Dworetsky, M. M. 1983, MNRAS, 203, 917Google Scholar
Eyer, L. & Bartholdi, P. 1999, A&AS, 135, 1Google Scholar
Ferraz-Mello, S. 1981, AJ, 86, 619Google Scholar
Foster, G. 1995, AJ, 109, 1889Google Scholar
Foster, G. 1996, AJ, 112, 1709Google Scholar
Frescura, F. A. M., Engelbrecht, C. A., & Frank, B. S. 2008, MNRAS, 388, 1693Google Scholar
Graham, M. J., Drake, A. J., Djorgovski, S. G., et al. 2013a, MNRAS, 434, 3423CrossRefGoogle Scholar
Graham, M. J., Drake, A. J., Djorgovski, S. G., Mahabal, A. A., & Donalek, C. 2013b, MNRAS, 434, 2629Google Scholar
He, H., Li, J., & Stoica, P. 2009, Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, p. 375Google Scholar
Heideman, M. T., Johnson, D. H., & Burrus, C. S. 1984, IEEE ASSP Magazine, 1, 14CrossRefGoogle Scholar
Horne, J. H. & Baliunas, S. L. 1986, ApJ, 302, 757CrossRefGoogle Scholar
Huijse, P., Estévez, P. A., Protopapas, P., Zegers, P., & Príncipe, J. C. 2012, IEEE Transactions on Signal Processing, 60, 5135Google Scholar
Jetsu, L. & Pelt, J. 1999, A&AS, 139, 629Google Scholar
Jurkevich, I. 1971, Ap&SS, 13, 154Google Scholar
Koen, C. 1990, ApJ, 348, 700Google Scholar
Koen, C. 1999, MNRAS, 309, 769Google Scholar
Koen, C. 2000, MNRAS, 316, 613Google Scholar
Koen, C. 2006, MNRAS, 371, 1390Google Scholar
Koen, C. 2009, MNRAS, 392, 190Google Scholar
Koen, C. 2010a, Ap&SS, 329, 267Google Scholar
Koen, C. 2010b, MNRAS, 401, 586CrossRefGoogle Scholar
Koen, C. & Lombard, F. 1993, MNRAS, 263, 287Google Scholar
Lafler, J. & Kinman, T. D. 1965, ApJS, 11, 216Google Scholar
Leroy, B. 2012, A&A, 545, A50Google Scholar
Lomb, N. R. 1976, Ap&SS, 39, 447Google Scholar
Marsh, M. S., Ireland, J., & Kucera, T. 2008, ApJ, 681, 672CrossRefGoogle Scholar
Palmer, D. M. 2009, ApJ, 695, 496Google Scholar
Pelt, J. 2009, Baltic Astronomy, 18, 83Google Scholar
Pelt, J., Olspert, N., Mantere, M. J., & Tuominen, I. 2011, A&A, 535, A23Google Scholar
Reegen, P. 2007, A&A, 467, 1353Google Scholar
Roberts, D. H., Lehar, J., & Dreher, J. W. 1987, AJ, 93, 968CrossRefGoogle Scholar
Scargle, J. D. 1982, ApJ, 263, 835Google Scholar
Schuster, A. 1897, Terrestrial Magnetism, 3, 14Google Scholar
Schwarzenberg-Czerny, A. 1989, MNRAS, 241, 153Google Scholar
Schwarzenberg-Czerny, A. 1991, MNRAS, 253, 198Google Scholar
Schwarzenberg-Czerny, A. 1996, ApJ, 460, L107CrossRefGoogle Scholar
Schwarzenberg-Czerny, A. 1997, ApJ, 489, 941CrossRefGoogle Scholar
Schwarzenberg-Czerny, A. 1998, MNRAS, 301, 831Google Scholar
Schwarzenberg-Czerny, A. 1999, ApJ, 516, 315Google Scholar
Stahn, Th., & Gizon, L. 2008, Solar Phys., 251, 31Google Scholar
Stoica, P., Li, J., & He, H. 2009, IEEE Transactions on Signal Processing, 57, 843Google Scholar
Stellingwerf, R. F. 1978, ApJ, 224, 953Google Scholar
Süveges, M. 2012, arXiv: 1212.0645Google Scholar
Vaníček, P. 1969, Ap&SS, 4, 387Google Scholar
Vio, R., Andreani, P., & Biggs, A. 2010, A&A, 519, A85Google Scholar
Vio, R., Diaz-Trigo, M., & Andreani, P. 2013, Astronomy & Computing, 1, 5Google Scholar
Wang, Y., Khardon, R., & Protopapas, P. 2012, ApJ, 756, 67Google Scholar
White, T. R., Brewer, B. J., Bedding, T. R., Stello, D., & Kjeldsen, H. 2010, CoAst, 161, 39Google Scholar
Zechmeister, M. & Kürster, M. 2009, A&A, 496, 577Google Scholar