Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T20:48:53.210Z Has data issue: false hasContentIssue false

Experimental realization of dynamo action: present status and prospects

Published online by Cambridge University Press:  18 July 2013

André Giesecke
Affiliation:
Helmholtz-Zentrum Dresden-RossendorfP.O.B. 510119, D-01314, Dresden, Germany email: [email protected]
Frank Stefani
Affiliation:
Helmholtz-Zentrum Dresden-RossendorfP.O.B. 510119, D-01314, Dresden, Germany email: [email protected]
Thomas Gundrum
Affiliation:
Helmholtz-Zentrum Dresden-RossendorfP.O.B. 510119, D-01314, Dresden, Germany email: [email protected]
Gunter Gerbeth
Affiliation:
Helmholtz-Zentrum Dresden-RossendorfP.O.B. 510119, D-01314, Dresden, Germany email: [email protected]
Caroline Nore
Affiliation:
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), CNRS, BP 133, F-91403 Orsay cedex, France email: [email protected]
Jacques Léorat
Affiliation:
Observatoire de Paris-Meudon, place Janssen, F-92195 Meudon, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the last decades, the experimental study of dynamo action has made great progress. However, after the dynamo experiments in Karlsruhe and Riga, the von-Kármán-Sodium (VKS) dynamo is only the third facility that has been able to demonstrate fluid flow driven self-generation of magnetic fields in a laboratory experiment. Further progress in the experimental examination of dynamo action is expected from the planned precession driven dynamo experiment that will be designed in the framework of the liquid sodium facility DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies).

In this paper, we briefly present numerical models of the VKS dynamo that demonstrate the close relation between the axisymmetric field observed in that experiment and the soft iron material used for the flow driving impellers. We further show recent results of preparatory water experiments and design studies related to the precession dynamo and delineate the scientific prospects for the final set-up.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Berhanu, M. et al. 2007, Europhys. Lett., 77, 59001 Google Scholar
Consolini, G. & De Michelis, P. 2003, Phys. Rev. Lett., 90, 058501 Google Scholar
Gailitis, A. et al. 2000, Phys. Rev. Lett. 84 (19), 43654368 Google Scholar
Gailitis, A. et al. 2004, Phys. Plasmas 11 2838–2843 Google Scholar
Giesecke, A., Stefani, F. & Gerbeth, G. 2010, Phys. Rev. Lett., 104, 044503 Google Scholar
Giesecke, A. et al. 2012, New J. Phys. 14 (5), 053005CrossRefGoogle Scholar
Krauze, A. 2010, Magnetohydrodynamics 46 (3), 271280 Google Scholar
Krause, F. & Rädler, K.-H., Mean-field magnetohydrodynamics and dynamo theory, Oxford, Pergamon Press, 1980 Google Scholar
Léorat, J. 2006, Magnetohydrodynamics, 42 (2–3), 143151 Google Scholar
Malkus, W. V. R. 1968, Science 160 259–264 Google Scholar
Marié, L., Normand, C. & Daviaud, F. 2006, Phys. Fluids, 18, 017102 Google Scholar
Monchaux, R. et al. 2007, Phys. Rev. Lett., 98, 044502 Google Scholar
Monchaux, R. et al. 2009, Phys. Fluids 21 (3), 035108 Google Scholar
Mouhali, W. 2010, PhD Thesis, Université Paris-Diderot – Paris VIIGoogle Scholar
Nore, C., Léorat, J., Guermond, J.-L. & Luddens, F. 2011, Phys. Rev. E 84 (1), 016317 Google Scholar
Stefani, F., Gailitis, A., & Gerbeth, G. 2008, Z. Angew. Math. Mech. 88 930954 CrossRefGoogle Scholar
Stefani, F., Gailitis, A., & Gerbeth, G. 2011, Astron. Nachr., 332, 4 Google Scholar
Stefani, F. et al. 2012, Magnetohydrodynamics 48 (1), 103113 Google Scholar
Stieglitz, R. & Müller, U. 2001, Phys. Fluids 13 561564 Google Scholar
Tilgner, A. 2005, Phys. Fluids 17 (3), 034104 Google Scholar
Ponomarenko, Y.-B. 1973, J. App. Mech. Tech. Phys. 14 775778 Google Scholar
Ravelet, F., Dubrulle, B., Daviaud, F. & Ratié, P.-A. 2012, Phys. Rev. Lett. 109 (2), 024503 Google Scholar
Verhille, G. et al. 2010, New J. Phys. 12 (3), 033006 Google Scholar
Wu, C.-C. & Roberts, P. 2009, Geophys. Astrophys. Fluid Dyn. 103 (6), 467501 Google Scholar