Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T13:38:02.120Z Has data issue: false hasContentIssue false

Exoplanet Upper Atmosphere Environment Characterization

Published online by Cambridge University Press:  23 April 2012

Helmut Lammer
Affiliation:
Austrian Academy of Sciences, Space Research Institute Schmiedlstr. 6, A-8042, Graz, Austria email: [email protected], [email protected]
Kristina G. Kislyakova
Affiliation:
N.I. Lobachevsky State University, University of Nizhnij Novgorod, 23 Prospekt Gagarina, 603950 Nizhnij Novgorod, Russian Federation email: [email protected] Institute for Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria email: [email protected], [email protected], [email protected]
Petra Odert
Affiliation:
Institute for Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria email: [email protected], [email protected], [email protected]
Martin Leitzinger
Affiliation:
Institute for Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria email: [email protected], [email protected], [email protected]
Maxim L. Khodachenko
Affiliation:
Austrian Academy of Sciences, Space Research Institute Schmiedlstr. 6, A-8042, Graz, Austria email: [email protected], [email protected]
Mats Holmström
Affiliation:
Swedish Institute of Space Physics, Box 812, SE-98128 Kiruna, Sweden email: [email protected]
Arnold Hanslmeier
Affiliation:
Institute for Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The intense stellar SXR and EUV radiation exposure at “Hot Jupiters” causes profound responses to their upper atmosphere structures. Thermospheric temperatures can reach several thousands of Kelvins, which result in dissociation of H2 to H and ionization of H to H+. Depending on the density and orbit location of the exoplanet, as a result of these high temperatures the thermosphere expands dynamically up to the Roche lobe, so that geometric blow-off with large mass loss rates and intense interaction with the stellar wind plasma can occur. UV transit observations together with advanced numerical models can be used to gain knowledge on stellar plasma and the planet's magnetic properties, as well as the upper atmosphere.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Ben-Jaffel, L. & Hosseini, Sona S. 2010, ApJ, 709, 1284CrossRefGoogle Scholar
Ekenbäck, A., Holmström, M., Wurz, P., Grießmeier, J.-M., Lammer, H., Selsis, F., & Penz, T. 2010, ApJ, 709, 670CrossRefGoogle Scholar
Ehrenreich, D., Lecavelier des Etangs, A., Hébrard, G., Désert, J.-M., Vidal-Madjar, A., McConnell, J. C., Parkinson, C. D., Ballester, G. E., & Ferlet, R. 2008, A&A, 483, 933Google Scholar
Erkaev, N. V., Kulikov, Yu. N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G. F., & Biernat, H. K. 2005, A&A, 472, 329Google Scholar
France, K., Stocke, J. T., Yang, H., Linsky, J. L., Wolven, B. C., Froning, C. S., Green, J. C., & Osterman, S. N. 2010, ApJ, 712, 1277CrossRefGoogle Scholar
García Muñoz, A. 2007, Planet. Space Sci., 55, 1426CrossRefGoogle Scholar
Guillot, T., Burrows, A., Hubbard, W. B., Lunine, J. I., & Saumon, D. 1996, ApJ, 459, L35CrossRefGoogle Scholar
Guo, J. H. 2011, ApJ, 733, 98CrossRefGoogle Scholar
Holmström, M., Ekenbäck, A., Selsis, F., Penz, T., Lammer, H., & Wurz, P. 2008, Nature, 451, 970CrossRefGoogle Scholar
Konacki, M., Torres, G., Jha, S., & Sasselov, D. 2003, Nature, 421, 507CrossRefGoogle Scholar
Koskinen, T. T., Yelle, R., Lavvas, P., & Lewis, N. K. 2010, ApJ, 723, 116CrossRefGoogle Scholar
Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., & Bauer, S. J. 2003, ApJL, 598, L121CrossRefGoogle Scholar
Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M. L., Panchenko, M., Kulikov, Yu. N., Zhang, T. L., Lichtenegger, H. I. M., Erkaev, N. V., Wuchterl, G., Micela, G., Penz, T., Biernat, H. K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., & Hanslmeier, A. 2009, A&A, 506, 399Google Scholar
Lecavelier Des Etangs, A., Vidal-Madjar, A., McConnell, J. C., & Hébrard, G. 2004, A&A, 418, L1Google Scholar
Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G. E., Désert, J.-M., Ferlet, R., Hébrard, G., Sing, D. K., Tchakoumegni, K.-O., & Udry, S. 2010, A&A, 514, A72Google Scholar
Linsky, J. L., Yang, H., France, K., Froning, C. S., Green, J. C., Stocke, J. T., & Osterman, S. N. 2010, ApJ, 717, 1291CrossRefGoogle Scholar
Llama, J., Wood, K., Jardine, M., Vidotto, A. A., Helling, Ch., Fossati, L., & Haswell, C. A. 2011, MNRAS, in pressGoogle Scholar
Murray-Clay, R. A., Chiang, E. I., & Murray, N. 2009, ApJ, 693, 23CrossRefGoogle Scholar
Penz, T., Erkaev, N. V., Kulikov, Yu. N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H. K., Selsis, F., Barge, P., Deleuil, M., & Léger, A. 2008, Planet. Space Sci., 56, 1260CrossRefGoogle Scholar
Shematovich, V. I. 2010, Solar Sys. Res., 44, 96CrossRefGoogle Scholar
Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W., & Albrecht, S. 2010, Nature, 465, 1049CrossRefGoogle Scholar
Southworth, J. 2010, MNRAS, 408, 1689CrossRefGoogle Scholar
Tian, F., Toon, O. B., Pavlov, A. A., & Sterck, H. D. e., 2005, ApJ, 621, 1049CrossRefGoogle Scholar
Vidal-Madjar, A., Lecavelier Des Etangs, A., Désert, J. M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2003, Nature, 422, 143CrossRefGoogle Scholar
Vidal-Madjar, A., Désert, J.-M., Lecavelier Des Etangs, A., Hébrard, G., Ballester, G. E., Ehrenreich, D., Ferlet, R., McConnell, J. C., Mayor, M., & Parkinson, C. D. 2004, ApJ, 604, L69CrossRefGoogle Scholar
Vidal-Madjar, A., Lecavelier Des Etangs, A., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2008, ApJ, 676, 57CrossRefGoogle Scholar
Yelle, R. V. 2004, Icarus, 170, 167CrossRefGoogle Scholar