Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:37:21.489Z Has data issue: false hasContentIssue false

Excitation of the obliquity of Earth-like planets via tidal forcing using the Andrade rheology

Published online by Cambridge University Press:  16 October 2024

Ema F. S. Valente*
Affiliation:
CFisUC, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
Alexandre C. M. Correia
Affiliation:
CFisUC, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal IMCCE, Observatoire de Paris, PSL Université, 77 Av. Denfert-Rochereau, 75014 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Close-in planets undergo strong tidal effects with their host stars that modify their spins and orbits. Adopting a Maxwell rheology, it has been shown that for the 5/2 and 7/2 spin-orbit resonances, the obliquity of these planets can stabilise at a high value. Here, we show that these high obliquity metastable states can also be observed for the same spin-orbit resonances considering the Andrade rheology.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Andrade, E. N. d. C. 1910, On the Rigidity of the Earth. Proc. R. Soc. Lond. A, 84, 112.Google Scholar
Anglada-Escudé, G., Amado, P. J., Barnes, J., Berdiñas, Z. M., Butler, R. P., Coleman, G. A. L., de La Cueva, I., Dreizler, S., Endl, M., Giesers, B., Jeffers, S. V., Jenkins, J. S., Jones, H. R. A., Kiraga, M., Kürster, M., López-González, M. J., Marvin, C. J., Morales, N., Morin, J., Nelson, R. P., Ortiz, J. L., Ofir, A., Paardekooper, S.-J., Reiners, A., Rodrguez, E., Rodrguez-López, C., Sarmiento, L. F., Strachan, J. P., Tsapras, Y., Tuomi, M., & Zechmeister, M. 2016, A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536(7617), 437440.CrossRefGoogle Scholar
Bochanski, J. J., Hawley, S. L., Covey, K. R., West, A. A., Reid, I. N., Golimowski, D. A., & Ivezić, Z. 2010, The luminosity and mass functions of low-mass stars in the galactic disk. ii. the field. The Astronomical Journal, 139(6), 26792699.CrossRefGoogle Scholar
Castillo-Rogez, J. C., Efroimsky, M., & Lainey, V. 2011, The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model. Journal of Geophysical Research (Planets), 116(E9), E09008.Google Scholar
Correia, A. C. M. & Valente, E. F. S. 2022, Tidal evolution for any rheological model using a vectorial approach expressed in Hansen coefficients. Celestial Mechanics and Dynamical Astronomy, 134(3), 24.CrossRefGoogle Scholar
Efroimsky, M. 2012, Bodily tides near spin-orbit resonances. Celestial Mechanics and Dynamical Astronomy, 112, 283330.CrossRefGoogle Scholar
Hut, P. 1980, Stability of tidal equilibrium. Astronomy and Astrophysics, 92, 167170.Google Scholar
Lambeck, K. 1980,. The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press. CrossRefGoogle Scholar
Renaud, J. P. & Henning, W. G. 2018, Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets. Astrophysical Journal, 857(2), 98.CrossRefGoogle Scholar
Tuomi, M., Jones, H. R. A., Butler, R. P., Arriagada, P., Vogt, S. S., Burt, J., Laughlin, G., Holden, B., Shectman, S. A., Crane, J. D., Thompson, I., Keiser, S., Jenkins, J. S., Berdiñas, Z., Diaz, M., Kiraga, M., & Barnes, J. R. 2019,. Frequency of planets orbiting m dwarfs in the solar neighbourhood.Google Scholar
Valente, E. F. S. & Correia, A. C. M. 2022, Tidal excitation of the obliquity of Earth-like planets in the habitable zone of M-dwarf stars. Astronomy and Astrophysics, 665, A130.CrossRefGoogle Scholar
Yoder, C. F. Astrometric and geodetic properties of Earth and the Solar System. In Global Earth Physics: A Handbook of Physical Constants 1995, pp. 1–31. American Geophysical Union, Washington D.C.CrossRefGoogle Scholar