Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-03T19:58:15.486Z Has data issue: false hasContentIssue false

Evolutionary Population Synthesis model with binary stars – Yunnan-II model

Published online by Cambridge University Press:  10 June 2020

F. Zhang
Affiliation:
National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming, 650011, China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, 650011, China email: [email protected]
Z. Han
Affiliation:
National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming, 650011, China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, 650011, China email: [email protected]
L. Li
Affiliation:
National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming, 650011, China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, 650011, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By considering a modified version of the evolutionary population synthesis (EPS) model for stellar populations (SPs) comprising binary stars, the retrieved galaxy and HII-region parameters/properties differ from the case of neglecting binary stars. The retrieved age, stellar metallicity and mass of galaxies increase (e.g. ∼ 0.2 dex when using spectral fitting algorithm), whilst the star formation rate decreases (∼0.2 dex). The radiation fields from intermediate-age SPs with binary stars could be potentially important ionizing sources in HII regions. Under this possibility, the theoretical division between star forming galaxy and AGN on the diagnostic diagrams would move towards the up-right corner and the retrieved gaseous metallicity would decrease.

Our prediction for the birth rate of binary neutron stars in SPs ranges from 10−9 to 10−6${\M {^\minus 1_\odot}} $ yr−1 when the kick velocity is from 0 to 190 km s−1.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abbott, B., Abbott, R., Abbott, T., et al. 2017, Phys. Rev. Lett., 119, 161101CrossRefGoogle ScholarPubMed
Belczynski, K., Askar, A., Arca-Sedda, M., et al. 2018, A&A, 615, A91Google Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151CrossRefGoogle Scholar
Chabrier, G. 2003, PASP, 115, 763CrossRefGoogle Scholar
Chruslinska, M., Belczynski, K., Klencki, J., Benacquista, M., et al. 2018, MNRAS, 474, 2937CrossRefGoogle Scholar
Duchene, G. & Kraus, A. 2013, ARA&A, 51, 269CrossRefGoogle Scholar
Eldridge, J. J., Izzard, R., & Tout, C. A. 2008, MNRAS, 384, 1109CrossRefGoogle Scholar
Kennicutt, R. C., Jr 1998, ARA&A, 36, 189CrossRefGoogle Scholar
Groves, B., Dopita, M., Sutherland, R., et al. 2008, ApJS, 176, 438CrossRefGoogle Scholar
Han, Z., Podsiadlowski, Ph., Lynas-Gray, A., et al. 2007, MNRAS, 380, 1098CrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Hernandez-Perez, F. & Charlot, G. 2013, MNRAS, 431, 2612CrossRefGoogle Scholar
Hernandez-Perez, F. & Charlot, G. 2014, MNRAS, 444, 257110.1093/mnras/stu1627CrossRefGoogle Scholar
Jiang, Z., Wang, J., et al. 2019, in prep.Google Scholar
Kroupa, P., Aarseth, S., Hurley, J., et al. 2001, MNRAS, 321, 699CrossRefGoogle Scholar
Lejeune, T., Cuisinier, F., & Buser, R. 1997, A&AS, 125, 229Google Scholar
Lejeune, T., Cuisinier, F., & Buser, R. 1998, A&AS, 130, 65Google Scholar
Ma, X., Hopkins, P., Garrison-Kimmel, S., et al. 2018, MNRAS, 478, 1694CrossRefGoogle Scholar
Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ, 121, 161CrossRefGoogle Scholar
Sana, H., de Mink, S. E., de Koteret, A., et al. 2012, Sci., 444, 6Google Scholar
Zhang, F., Han, Z., Li, L., Hurley, J., et al. 2004, A&A, 415,117CrossRefGoogle Scholar
Zhang, F., Han, Z., Li, L., Hurley, J., et al. 2005, MNRAS, 357,1088CrossRefGoogle Scholar
Zhang, F., Li, L., Zhang, Y., et al. 2012, MNRAS, 421,74310.1016/j.phpro.2012.03.628Google Scholar
Zhang, F., Li, L., Han, Z., Kang, X., et al. 2015, MNRAS, 447, L21CrossRefGoogle Scholar
Zhang, F., Li, L., Han, Z., et al. 2018, in prep.Google Scholar