No CrossRef data available.
Published online by Cambridge University Press: 27 October 2016
In this contribution, I discuss some aspects of the dynamical evolution of supermassive black hole binaries and their accretion discs. Firstly, I discuss the issue of alignment of the spins of the two binary component, which has important implications for the shape of the gravitational wave emitted at merger and for the possibility of a strong recoil of the remnant black hole. Even under the favourable assumption that mass flow through the gap is not inhibited by tidal torque, we demonstrate that differential accretion onto the two components of the systems results in a very different spin evolution of the two black holes. Secondly, I revisit the issue of how much mass can flow within the cavity carved in the disc by an equal mass binary. Recent simulations have shown that the tidal torque of the binary is generally not sufficient to prevent accretion onto the binary component. Here, I demonstrate that such results are heavily dependent on the disc thickness. While for H/R ~ 0.1 (the value adopted in most simulations to date), we reproduce the previous results, we show that as H/R is decreased to ~ 0.01, mass flow through the gap is essentially shut off almost completely. Thirdly, I show numerical simulations of the process of gas squeezing during the merger proper, demonstrating that most of the disc mass is accreted producing a super-Eddington flare.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.