Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T01:27:00.488Z Has data issue: false hasContentIssue false

Evolution of Long Term Variability in Solar Analogs

Published online by Cambridge University Press:  12 September 2017

Ricky Egeland
Affiliation:
High Altitude Observatory/NCAR, 3080 Center Green Dr, Boulder CO, 80301, USA email: egeland@ucar.edu Dept. of Physics, Montana State University, P.O. Box 173840, Bozeman MT 59717, USA
Willie Soon
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Sallie Baliunas
Affiliation:
No affiliation
Jeffrey C. Hall
Affiliation:
Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA
Gregory W. Henry
Affiliation:
Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Earth is the only planet known to harbor life, therefore we may speculate on how the nature of the Sun-Earth interaction is relevant to life on Earth, and how the behavior of other stars may influence the development of life on their planetary systems. We study the long-term variability of a sample of five solar analog stars using composite chromospheric activity records up to 50 years in length and synoptic visible-band photometry about 20 years long. This sample covers a large range of stellar ages which we use to represent the evolution in activity for solar mass stars. We find that young, fast rotators have an amplitude of variability many times that of the solar cycle, while old, slow rotators have very little variability. We discuss the possible impacts of this variability on young Earth and exoplanet climates.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Baliunas, S. L., Donahue, R. A., Soon, W. H., Horne, J. H., Frazer, J., Woodard-Eklund, L., Bradford, M., Rao, L. M., Wilson, O. C., Zhang, Q., Bennett, W., Briggs, J., Carroll, S. M., Duncan, D. K., Figueroa, D., Lanning, H. H., Misch, T., Mueller, J., Noyes, R. W., Poppe, D., Porter, A. C., Robinson, C. R., Russell, J., Shelton, J. C., Soyumer, T., Vaughan, A. H., & Whitney, J. H. Chromospheric variations in main-sequence stars. ApJ, 438: 269287, Jan. 1995. doi:10.1086/175072.Google Scholar
Baliunas, S. L., Nesme-Ribes, E., Sokoloff, D., & Soon, W. H. A Dynamo Interpretation of Stellar Activity Cycles. ApJ, 460: 848, Apr. 1996. doi:10.1086/177014.Google Scholar
Barnes, S. A. Ages for Illustrative Field Stars Using Gyrochronology: Viability, Limitations, and Errors. ApJ, 669: 11671189, Nov. 2007. doi:10.1086/519295.Google Scholar
Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences, 112 (47): 1451814521, 2015. doi:10.1073/pnas.1517557112.Google Scholar
Bouvier, J. Lithium depletion and the rotational history of exoplanet host stars. A&A, 489: L53L56, Oct. 2008. doi:10.1051/0004-6361:200810574.Google Scholar
Bressan, A., Marigo, P., Girardi, L., Salasnich, B., Dal Cero, C., Rubele, S., & Nanni, A. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. MNRAS, 427: 127145, Nov. 2012. doi:10.1111/j.1365-2966.2012.21948.x.Google Scholar
Donahue, R. A., Saar, S. H., & Baliunas, S. L. A Relationship between Mean Rotation Period in Lower Main-Sequence Stars and Its Observed Range. ApJ, 466: 384, July 1996. doi:10.1086/177517.Google Scholar
Donahue, R. A., Dobson, A. K., & Baliunas, S. L. Stellar Active Region Evolution - II. Identification and Evolution of Variance Morphologies in CA II H+K Time Series. Sol. Phys., 171: 211220, Mar. 1997. doi:10.1023/A:1004922323928.CrossRefGoogle Scholar
Eddy, J. A. The Maunder Minimum. Science, 192: 11891202, June 1976. doi:10.1126/science.192.4245.1189.Google Scholar
Egeland, R., Metcalfe, T. S., Hall, J. C., & Henry, G. W. Sun-like Magnetic Cycles in the Rapidly-rotating Young Solar Analog HD 30495. ApJ, 812: 12, Oct. 2015. doi:10.1088/0004-637X/812/1/12.Google Scholar
Egeland, R., Soon, W., Baliunas, S., Hall, J. C., Pevtsov, A. A., & Henry, G. W. Dynamo Sensitivity in Solar Analogs with 50 Years of Ca II H & K Activity. In Feiden, G. A., editor, Proceedings of the 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun. Zenodo, Sept. 2016. doi:10.5281/zenodo.154118.Google Scholar
Egeland, R., Soon, W., Baliunas, S., Hall, J. C., Pevtsov, A. A., & Henry, G. W. The solar dynamo zoo. In The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun. Zenodo, 2016. doi:10.5281/zenodo.57920. URL https://doi.org/10.5281/zenodo.57920.Google Scholar
Egeland, R., Soon, W., Baliunas, S., Hall, J. C., Pevtsov, A. A., & Bertello, L. The Mount Wilson Observatory S-index of the Sun. ApJ, 835 (1), January 2017. doi:10.3847/1538-4357/835/1/25.Google Scholar
Flower, P. J. Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections. ApJ, 469: 355, Sept. 1996. doi:10.1086/177785.Google Scholar
Gaidos, E. J., Henry, G. W., & Henry, S. M. Spectroscopy and Photometry of Nearby Young Solar Analogs. AJ, 120: 10061013, Aug. 2000. doi:10.1086/301488.Google Scholar
Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys., 74: 2134, Nov. 1981. doi:10.1007/BF00151270.Google Scholar
Hall, J. C., Lockwood, G. W., & Skiff, B. A. The Activity and Variability of the Sun and Sun-like Stars. I. Synoptic Ca II H and K Observations. AJ, 133: 862881, Mar. 2007. doi:10.1086/510356.Google Scholar
Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C., & Woods, T. N. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36: L07801, Apr. 2009. doi:10.1029/2008GL036797.Google Scholar
Harvey, K. L. & White, O. R. Magnetic and Radiative Variability of Solar Surface Structures. I. Image Decomposition and Magnetic-Intensity Mapping. ApJ, 515: 812831, Apr. 1999. doi:10.1086/307035.Google Scholar
Henry, G. W., Fekel, F. C., & Hall, D. S. An Automated Search for Variability in Chromospherically Active Stars. AJ, 110: 2926, Dec. 1995. doi:10.1086/117740.Google Scholar
Holmberg, J., Nordström, B., & Andersen, J. The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics. A&A, 501: 941947, July 2009. doi:10.1051/0004-6361/200811191.Google Scholar
Judge, P. G. & Egeland, R. Century-long monitoring of solar irradiance and Earth's albedo using a stable scattering target in space. MNRAS, 448: L90L93, Mar. 2015. doi:10.1093/mnrasl/slv004.Google Scholar
Kopp, G. An assessment of the solar irradiance record for climate studies. Journal of Space Weather and Space Climate, 4 (27): A14, Apr. 2014. doi:10.1051/swsc/2014012.Google Scholar
Lee, Y. S., Beers, T. C., Allende Prieto, C., Lai, D. K., Rockosi, C. M., Morrison, H. L., Johnson, J. A., An, D., Sivarani, T., & Yanny, B. The SEGUE Stellar Parameter Pipeline. V. Estimation of Alpha-element Abundance Ratios from Low-resolution SDSS/SEGUE Stellar Spectra. AJ, 141: 90, Mar. 2011. doi:10.1088/0004-6256/141/3/90.Google Scholar
Leighton, R. B. Observations of Solar Magnetic Fields in Plage Regions. ApJ, 130: 366, Sept. 1959. doi:10.1086/146727.Google Scholar
Li, T. D., Bi, S. L., Liu, K., Tian, Z. J., & Shuai, G. Z. Stellar parameters and seismological analysis of the star 18 Scorpii. A&A, 546: A83, Oct. 2012. doi:10.1051/0004-6361/201219063.Google Scholar
Linsky, J. L. & Avrett, E. H. The Solar H and K Lines. PASP, 82: 169, Apr. 1970. doi:10.1086/128904.Google Scholar
Lockwood, G. W., Skiff, B. A., & Radick, R. R. The Photometric Variability of Sun-like Stars: Observations and Results, 1984-1995. ApJ, 485: 789811, Aug. 1997.Google Scholar
Lockwood, G. W., Skiff, B. A., Henry, G. W., Henry, S., Radick, R. R., Baliunas, S. L., Donahue, R. A., & Soon, W. Patterns of Photometric and Chromospheric Variation among Sun-like Stars: A 20 Year Perspective. ApJS, 171: 260303, July 2007. doi:10.1086/516752.Google Scholar
Meehl, G. A., Arblaster, J. M., & Marsh, D. R. Could a future “Grand Solar Minimum” like the Maunder Minimum stop global warming? Geophys. Res. Lett., 40: 17891793, May 2013. doi:10.1002/grl.50361.Google Scholar
Meléndez, J., Ramírez, I., Karakas, A. I., Yong, D., Monroe, T. R. Bedell, M., Bergemann, M., Asplund, M., Tucci Maia, M., Bean, J., do Nascimento, J.-D. Jr., Bazot, M., Alves-Brito, A., Freitas, F. C., & Castro, M. 18 Sco: A Solar Twin Rich in Refractory and Neutron-capture Elements. Implications for Chemical Tagging. ApJ, 791: 14, Aug. 2014. doi:10.1088/0004-637X/791/1/14.Google Scholar
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. Rotation, convection, and magnetic activity in lower main-sequence stars. ApJ, 279: 763777, Apr. 1984. doi:10.1086/161945.CrossRefGoogle Scholar
Petit, P., Dintrans, B., Solanki, S. K., Donati, J.-F., Aurière, M., Lignières, F., Morin, J., Paletou, F., Ramirez Velez, J., Catala, C., & Fares, R. Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold. MNRAS, 388: 8088, July 2008. doi:10.1111/j.1365-2966.2008.13411.x.Google Scholar
Pevtsov, A. A., Virtanen, I., Mursula, K., Tlatov, A., & Bertello, L. Reconstructing solar magnetic fields from historical observations. I. Renormalized Ca K spectroheliograms and pseudo-magnetograms. A&A, 585: A40, Jan. 2016. doi:10.1051/0004-6361/201526620.Google Scholar
Porto de Mello, G. F. & da Silva, L. HR 6060: The Closest Ever Solar Twin? ApJ, 482: L89, June 1997. doi:10.1086/310693.Google Scholar
Prša, A., Harmanec, P., Torres, G., Mamajek, E., Asplund, M., Capitaine, N., Christensen-Dalsgaard, J., Depagne, É., Haberreiter, M., Hekker, S., Hilton, J., Kopp, G., Kostov, V., Kurtz, D. W., Laskar, J., Mason, B. D., Milone, E. F., Montgomery, M., Richards, M., Schmutz, W., Schou, J., & Stewart, S. G. Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3. AJ, 152: 41, Aug. 2016. doi:10.3847/0004-6256/152/2/41.Google Scholar
Radick, R. R., Lockwood, G. W., Skiff, B. A., & Baliunas, S. L. Patterns of Variation among Sun-like Stars. ApJS, 118: 239258, Sept. 1998. doi:10.1086/313135.Google Scholar
Sagan, C. & Mullen, G. Earth and Mars: Evolution of Atmospheres and Surface Temperatures. Science, 177: 5256, July 1972. doi:10.1126/science.177.4043.52.Google Scholar
Schwabe, M. Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astronomische Nachrichten, 21: 233, Feb. 1844.Google Scholar
Skumanich, A. Time Scales for CA II Emission Decay, Rotational Braking, and Lithium Depletion. ApJ, 171: 565, Feb. 1972. doi:10.1086/151310.Google Scholar
Solanki, S. K., Krivova, N. A., & Haigh, J. D. Solar Irradiance Variability and Climate. ARA&A, 51: 311351, Aug. 2013. doi:10.1146/annurev-astro-082812-141007.Google Scholar
Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, B., & Midgley, B. Ipcc, 2013: climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. 2013.Google Scholar
Willson, R. C. & Hudson, H. S. The sun's luminosity over a complete solar cycle. Nature, 351: 4244, May 1991. doi:10.1038/351042a0.Google Scholar
Wilson, O. C. Flux Measurements at the Centers of Stellar H- and K-Lines. ApJ, 153: 221, July 1968. doi:10.1086/149652.Google Scholar
Wilson, O. C. Chromospheric variations in main-sequence stars. ApJ, 226: 379396, Dec. 1978. doi:10.1086/156618.CrossRefGoogle Scholar
Yeo, K. L., Krivova, N. A., & Solanki, S. K. Solar Cycle Variation in Solar Irradiance. Space Sci. Rev., 186: 137167, Dec. 2014. doi:10.1007/s11214-014-0061-7.Google Scholar